Development of PID Control Algorithms for High-Precision Motion Control
Author(s):K.H.Suchitra�, G.Chinnappa gowda�, T.Ruresh Gowda�
Affiliation: 1,2,3Alliance College of Engineering and Design, Bangalore, India.
Page No: 1-5
Volume issue & Publishing Year: Volume 1 Issue 4 ,Aug-2024
Journal: International Journal of Advanced Engineering Application (IJAEA)
ISSN NO: 3048-6807
DOI:
Abstract:
This study focuses on the development and optimization of Proportional-Integral-Derivative (PID) control algorithms tailored for high-precision motion control applications. We explore various tuning methods, including Ziegler-Nichols, Cohen-Coon, and modern optimization techniques such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). The performance of these algorithms is evaluated through simulations and real-time experiments in a laboratory setting using a linear motion control system. Results demonstrate significant improvements in system response time, overshoot, and steady-state error, affirming the effectiveness of advanced tuning methods.
Keywords: PID Control, Motion Control, High-Precision, Tuning Methods, Genetic Algorithms, Particle Swarm Optimization, System Response, Overshoot, Steady-State Error.
Reference:
- 1. Ogata, K. (2010). Modern Control Engineering. Prentice Hall.
- 2. Nise, N. S. (2015). Control Systems Engineering. Wiley.
- 3. Ziegler, J. G., & Nichols, N. B. (1942). "Optimum Settings for Automatic Controllers." Journal of Dynamic Systems, Measurement,
- and Control, 115(3), 220-222.
- 4. Cohen, G., & Coon, G. A. (1953). "Theoretical Considerations of Retarded Control." Transactions of the ASME, 75, 827-834.
- 5. Das, S. (2011). "Optimization of PID Controller Parameters using Genetic Algorithm." International Journal of Computer Applications,
- 30(3), 6-10.
- 6. Poli, R., Kennedy, J., & Blackwell, T. (2007). "Particle Swarm Optimization." Swarm Intelligence, 1(1), 33-57.
- 7. Astrom, K. J., & Wittenmark, B. (2013). Adaptive Control. Dover Publications.
- 8. Bequette, B. W. (2010). Process Control: Modeling, Design, and Simulation. Prentice Hall.
- 9. Chen, C. L., & Huang, C. H. (2014). "Robust PID Control of a DC Motor." IEEE Transactions on Industrial Electronics, 61(2), 579-
- 588.
- 10. Khalil, H. K. (2015). Nonlinear Control. Prentice Hall.
- 11. Dorf, R. C., & Bishop, R. H. (2011). Modern Control Systems. Prentice Hall.
- 12. Driankov, D., Hellendoorn, H., & Reinfrank, M. (1993). An Introduction to Fuzzy Control. Springer.
- 13. Hang, C. C., Gao, H., & Liu, Z. (1994). "Tuning of PID Controllers Based on Gain and Phase Margins." Control Engineering Practice,
- 2(2), 184-193.
- 14. Sontag, E. D. (1998). "Mathematical Control Theory: Deterministic Finite Dimensional Systems." Control Systems and Control Theory,
- 6, 1-26.
- 15. Liu, J., & Wang, Q. (2012). "Optimization of PID Controller Based on PSO Algorithm." Journal of Control Theory and Applications,
- 10(3), 345-353.
- 16. O'Dwyer, A. (2006). Handbook of PI and PID Controller Tuning Rules. The Control Handbook.
- 17. Han, S. (2009). "PID Control of a Nonlinear Dynamic System with Uncertainties." Journal of Process Control, 19(5), 865-878.
- 18. Kuo, B. C., & Golnaraghi, F. (2003). Automatic Control Systems. Wiley.
- 19. Lee, J. H., & Park, S. H. (2010). "Advanced PID Control Algorithm for Motion Control." Journal of Mechanical Science and
- Technology, 24(9), 1867-1874.
- 20. van de Vegte, W. (2017). "Understanding PID Controllers: A Systematic Approach." Control Engineering Practice, 62, 127-135.
