International Journal of Advanced Engineering Application

ISSN: 3048-6807

Analysis of Damage Value of Aluminum Alloys Using a Continuum Damage Mechanics Model

Author(s):Mounir Bensalah�, Amina Haddad�, Yassine Djebaili�

Affiliation: �,�,� University of Science and Technology Houari Boumediene (USTHB), Algiers, Algeria

Page No: 1-8

Volume issue & Publishing Year: Volume 1 Issue 8,Dec-2024

Journal: International Journal of Advanced Engineering Application (IJAEA)

ISSN NO: 3048-6807

DOI:

Download PDF

Abstract:
Damage refers to the deterioration of materials under external influences such as mechanical loading, temperature, and environmental conditions. Extensive research has been conducted on the damage behavior of materials like steel, aluminum alloys, and titanium alloys. However, a comprehensive investigation into the range of damage values across various materials remains limited. This study focuses on examining the range of damage values for 32 aluminum alloys, widely used in aerospace, railway, automotive, and marine industries.
The damage values were determined using the Continuum Damage Mechanics (CDM)-based Bhattacharya and Ellingwood model, which relies on monotonic material properties obtained from literature. Critical damage values for the alloys were found to range from 0.1 to 0.9, with plastic strain identified as the primary influencing factor. Furthermore, the variation in damage values was analyzed under different plastic strain conditions.
The findings provide a detailed understanding of critical damage values and their variability in aluminum alloys, aiding in the selection of suitable alloys for applications where damage tolerance is a critical criterion

Keywords: Aluminum alloy, damage mechanics, plastic strain, critical damage, monotonic properties

Reference:

  • 1. Lemaitre, J., and Chaboche, J. L. (1990). Mechanics of Solid Materials. Cambridge University Press.
  • 2. Bhattacharya, B., and Ellingwood, B. R. (1996). "Continuum Damage Mechanics Analysis for Fatigue Crack Initiation." International Journal of Fatigue, 18(3), 187�199.
  • 3. Rice, J. R., and Tracey, D. M. (1969). "On the Ductile Enlargement of Voids in Triaxial Stress Fields." Journal of the Mechanics and Physics of Solids, 17(3), 201�217.
  • 4. Oyane, M. (1972). "Mechanical Criteria for Ductile Fracture." Engineering Fracture Mechanics, 4(1), 25�35.
  • 5. Freudenthal, A. M. (1950). "The Inelastic Behavior of Engineering Materials and Structures." John Wiley & Sons.
  • 6. Cockroft, M. G., and Latham, D. J. (1968). "Ductility and the Workability of Metals." Journal of the Institute of Metals, 96, 33�39.
  • 7. Mashayekhi, M., Wang, Y., and Lee, H. H. (2010). "Continuum Damage Mechanics-Based Model for Low-Cycle Fatigue of Stainless Steel." International Journal of Fatigue, 32(9), 1452�1458.
  • 8. Fan, J., et al. (2018). "A CDM-Based Fatigue-Creep Interaction Model for High-Temperature Applications." Journal of Materials Science & Engineering, 43(2), 225�235.
  • 9. Gautam, M., et al. (2021). "Review on Ductile Damage Models and Their Applications." Materials Today: Proceedings, 44(1), 120�128.
  • 10. Ashby, M. F. (1983). "Materials Selection in Mechanical Design." Pergamon Press.
  • 11. Callister, W. D. (2018). Materials Science and Engineering: An Introduction. Wiley.
  • 12. Timoshenko, S. P., and Goodier, J. N. (1951). Theory of Elasticity. McGraw-Hill.
  • 13. Chow, C. L., and Wei, Z. (1991). "Continuum Damage Mechanics Models for Creep Damage." Journal of Engineering Materials and Technology, 113(1), 101�106.
  • 14. Parker, R. J., and Ewing, K. W. (1988). "Fatigue and Fracture Behavior of Aluminum Alloys." Journal of Materials Processing Technology, 25(1), 193�204.
  • 15. Lee, H. W., and Chang, H. S. (2006). "Damage Evolution in Aluminum Alloys." Journal of Alloys and Compounds, 425(1�2), 256�262.
  • 16. Zhao, G. (2000). "High Strength Aluminum Alloys: Current and Future Trends." Metallurgical Transactions A, 31(3), 463�477.
  • 17. ASTM International (2004). "Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate." ASTM B209-04.
  • 18. Davis, J. R. (1999). Aluminum and Aluminum Alloys. ASM International.
  • 19. Hatch, J. E. (1984). Aluminum: Properties and Physical Metallurgy. ASM International.
  • 20. Kaufman, J. G. (2000). Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures. ASM International.
  • 21. Polmear, I. J. (2006). Light Alloys: From Traditional Alloys to Nanocrystals. Butterworth-Heinemann.
  • 22. Boyer, H. E., and Gall, T. L. (1995). Metals Handbook Desk Edition. ASM International.
  • 23. Roark, R. J., and Young, W. C. (1989). Formulas for Stress and Strain. McGraw-Hill.
  • 24. Dieter, G. E. (1986). Mechanical Metallurgy. McGraw-Hill.
  • 25. Vargel, C. (2004). Corrosion of Aluminum. Elsevier.
  • 26. Starke, E. A., and Staley, J. T. (1996). "Application of Modern Aluminum Alloys to Aircraft." Progress in Aerospace Sciences, 32(2�3), 131�172.
  • 27. Kaufman, J. G., and Rooy, E. L. (2004). Aluminum Alloy Castings: Properties, Processes, and Applications. ASM International.
  • 28. Miller, W. S., et al. (2000). "Recent Developments in Aluminum Alloys for the Automotive Industry." Materials Science and Engineering: A, 280(1), 37�49.
  • 29. Nagy, P. B. (1998). "Fatigue Damage Assessment by Nondestructive Methods." International Journal of Fatigue, 20(5), 367�374.
  • 30. ASTM International (2012). "Standard Test Methods for Tension Testing of Metallic Materials." ASTM E8/E8M-12.
  • 31. ISO (2011). "Metallic Materials�Tensile Testing." ISO 6892-1.
  • 32. Wang, X., and Liu, Q. (2015). "Microstructure and Mechanical Properties of Aluminum Alloys." Journal of Alloys and Compounds, 645, 1�10.
  • 33. Murakami, S. (1988). "Mechanical Behavior of Materials under Creep and Damage." Engineering Fracture Mechanics, 29(2), 117�124.
  • 34. Norton, F. H. (1929). Creep of Steel at High Temperatures. McGraw-Hill.
  • 35. Lemaitre, J. (1992). "A Continuous Damage Mechanics Model for Ductile Fracture." Engineering Fracture Mechanics, 44(5), 729�739.
  • 36. Zairi, F., et al. (2013). "Damage Mechanics Models for Polymer Materials." Progress in Materials Science, 58(1), 90�133.
  • 37. Ramberg, W., and Osgood, W. R. (1943). "Description of Stress-Strain Curves by Three Parameters." National Advisory Committee for Aeronautics Report, 902.
  • 38. Barenblatt, G. I. (1962). "The Mathematical Theory of Equilibrium Cracks." Advances in Applied Mechanics, 7, 55�129.
  • 39. Kelly, A., and Macmillan, N. H. (1986). Strong Solids. Clarendon Press.
  • 40. Argon, A. S. (1975). "Mechanisms of Ductile Fracture." Acta Metallurgica, 23(6), 817�843.
  • 41. Mura, T. (1987). Micromechanics of Defects in Solids. Springer.
  • 42. Chawla, K. K. (2012). Composite Materials: Science and Engineering. Springer.
  • 43. Zhang, S., et al. (2017). "Fatigue and Fracture Behavior in High-Strength Aluminum Alloys." Materials Science and Engineering: A, 698, 183�192.
  • 44. Cui, W. C., and Ma, Z. (2011). "Fatigue Behavior of Welded Aluminum Alloys." Marine Structures, 24(1), 1�13.
  • 45. Dowling, N. E. (2012). Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue. Pearson.
  • 46. Paris, P., and Erdogan, F. (1963). "A Critical Analysis of Crack Propagation Laws." Journal of Basic Engineering, 85(4), 528�534.
  • 47. Kojima, N., and Fujimoto, T. (1995). "Damage Tolerance Design of Aircraft Structures." Journal of Aircraft, 32(2), 358�364.