Blockchain for Supply Chain Transparency in Post-Pandemic Global Trade

Ningthoujam Kiran Singh¹, Elangbam Prameshwori Devi², Thangjam Bikramjit³, Ibemhal Chanu⁴

1,2,3,4Department of Management Studies, Manipur University, Imphal, Manipur, India

Abstract

The COVID-19 pandemic exposed critical vulnerabilities in global supply chains, highlighting the urgent need for resilience, transparency, and trust in international trade systems. Traditional supply chain management practices often suffer from information asymmetry, data silos, and lack of real-time visibility, which hinder effective coordination among stakeholders. Blockchain technology, with its decentralized, immutable, and transparent ledger system, has emerged as a potential solution to these challenges. This paper explores the role of blockchain in enhancing supply chain transparency in the context of post-pandemic global trade. It examines how blockchain can support secure data sharing, ensure traceability of goods, and improve trust among trading partners. Applications in sectors such as pharmaceuticals, food distribution, and manufacturing are highlighted, where blockchain adoption has been accelerated by the need for verifiable information and safe logistics during and after the pandemic. The study also discusses challenges such as interoperability, regulatory uncertainties, and high implementation costs. A conceptual framework is proposed to illustrate how blockchain-enabled supply chains can strengthen resilience, accountability, and sustainability in global trade.

Keywords: Blockchain, Supply Chain Transparency, Post-Pandemic Trade, Resilience, Traceability

1. Introduction

The COVID-19 pandemic disrupted global trade on an unprecedented scale, exposing systemic weaknesses in supply chain management. Lockdowns, border restrictions, labor shortages, and logistical delays caused severe disruptions across industries ranging from pharmaceuticals to manufacturing. These disruptions underscored the vulnerability of highly interconnected supply chains and the urgent need for mechanisms that provide real-time visibility, trust, and transparency across stakeholders. Traditional supply chain systems, which rely on centralized databases and paperbased records, often fail to provide accurate, timely, and trustworthy information. As a result, businesses and consumers face uncertainties regarding the origin, safety, and availability of goods. In this context, blockchain technology has emerged as a transformative innovation. By offering a decentralized and immutable ledger, blockchain ensures that all transactions within a supply chain are securely recorded, time-stamped, and accessible to authorized stakeholders. This creates a single source of truth that enhances trust and reduces the risks associated with fraud, counterfeit goods, and information asymmetry. For instance, blockchain has been applied to verify the authenticity of vaccines during the pandemic, ensuring that sensitive products were delivered safely and without tampering. Similarly, in the food sector, blockchain-enabled traceability has helped assure consumers about the quality and safety of perishable goods. The relevance of blockchain in supply chain transparency extends beyond immediate pandemic-related concerns. In the **post**pandemic global trade environment, resilience has become a strategic priority for governments, businesses, and consumers. Blockchain supports resilience by enabling end-to-end traceability, smart contracts for automated compliance, and decentralized coordination that reduces dependency on central authorities. Furthermore, blockchain aligns with sustainability agendas by making supply chain practices more accountable and verifiable, thus supporting goals such as responsible sourcing and carbon footprint tracking. Despite its potential, the adoption of blockchain faces challenges. Technical interoperability between different blockchain platforms, lack of standardized global regulations, and high costs of implementation remain barriers to widespread adoption. Moreover, cultural resistance and limited awareness among small and medium enterprises (SMEs) in developing economies further constrain integration. These barriers need to be addressed to unlock blockchain's transformative potential in global trade systems.

This paper aims to analyze the opportunities and challenges of blockchain for supply chain transparency in the post-pandemic context. It reviews relevant literature, highlights sectoral applications, and develops a conceptual framework illustrating blockchain-enabled supply chain resilience. By doing so, it contributes to ongoing discussions on how digital technologies can support the redesign of global trade networks for greater transparency and sustainability.

2. Literature Review

The concept of blockchain in supply chain management has attracted considerable scholarly attention over the past decade, primarily due to its potential to address long-standing challenges related to trust, visibility, and accountability. Blockchain is a decentralized digital ledger that records transactions across distributed nodes in a manner that is immutable and transparent. Each transaction is cryptographically secured, time-stamped, and linked to previous entries, thereby creating a permanent and tamper-resistant record. Within supply chain contexts, blockchain enables stakeholders to access a shared version of truth, eliminating the inefficiencies of centralized databases and reducing the risks associated with fraud, data manipulation, and counterfeit products. Early studies emphasized the role of blockchain in enhancing product traceability, particularly in industries such as agriculture, pharmaceuticals, and luxury goods, where authenticity and provenance are critical.

The COVID-19 pandemic intensified scholarly and industry interest in blockchain by exposing critical vulnerabilities in global supply chains. Research shows that disruptions caused by border closures, labor shortages, and logistical bottlenecks highlighted the limitations of conventional supply chain models. Scholars have argued that lack of real-time visibility and overreliance on centralized systems amplified these vulnerabilities, leading to delays, misinformation, and loss of consumer trust. Blockchain emerged as a promising technology to overcome these issues by enabling transparent and decentralized coordination. Case studies during the pandemic highlighted successful applications of blockchain in verifying the authenticity of vaccines, tracking personal protective equipment (PPE), and ensuring the safety of perishable goods. These use cases not only validated blockchain's technical potential but also accelerated its adoption in critical sectors. Post-pandemic literature emphasizes blockchain as a strategic tool for building supply chain resilience in the new global trade environment. The shift toward resilience reflects an acknowledgment that efficiency alone is no longer sufficient; supply chains must also be transparent, adaptable, and trustworthy. Blockchain contributes to resilience by facilitating end-to-end traceability of goods, enabling automated compliance through smart contracts, and fostering multistakeholder collaboration without reliance on centralized authorities. Studies suggest that blockchain-enabled transparency enhances consumer confidence, improves regulatory oversight, and reduces the risks of counterfeit or substandard goods entering global markets. Moreover, blockchain has been linked to sustainability goals, as it allows verification of responsible sourcing practices and monitoring of environmental indicators such as carbon emissions along supply chains. Despite its growing recognition, the literature also highlights several barriers to blockchain adoption in supply chains. Interoperability between different blockchain platforms remains a technical challenge, with fragmented ecosystems limiting seamless data exchange across industries and geographies. Regulatory uncertainties are another major concern, as global trade involves diverse jurisdictions with inconsistent legal frameworks for blockchain governance. High initial investment costs and scalability issues further constrain adoption, particularly among small and medium enterprises that lack the resources to experiment with advanced digital technologies. In addition, cultural and organizational resistance to change hinders the transition from traditional supply chain management practices to blockchain-enabled systems. Scholars argue that these challenges necessitate not only technological innovation but also supportive policy frameworks, cross-industry collaboration, and targeted capacity-building initiatives.

Overall, the literature demonstrates a growing consensus that blockchain has the potential to revolutionize supply chain management by embedding transparency, trust, and resilience into global trade networks. The pandemic served as a catalyst that accelerated blockchain experimentation, while the post-pandemic context has reinforced its relevance as a long-term solution. However, successful integration will depend on addressing technical, financial, and regulatory barriers, as well as aligning blockchain adoption with broader sustainability and resilience agendas in global commerce.

3. Methodology

This study adopts a qualitative research methodology based on a systematic review of scholarly and industry literature, supported by the development of a conceptual framework that illustrates how blockchain can enhance supply chain transparency in post-pandemic global trade. The methodology was structured in four stages: literature identification, screening and classification, thematic synthesis, and framework development.

In the first stage, academic databases such as Scopus, Web of Science, IEEE Xplore, and ScienceDirect were searched using keywords including "blockchain in supply chains," "supply chain transparency," "post-pandemic trade," and "blockchain resilience." The search was limited to peer-reviewed journal articles, conference papers, and review studies published between 2015 and 2025, ensuring both pre-pandemic and post-pandemic perspectives were included. To incorporate practical insights, white papers, industry case studies, and reports from organizations such as the World Economic Forum, IBM, and Deloitte were also reviewed.

The second stage involved screening and classification of the collected sources. Studies were assessed for relevance to blockchain applications in supply chains and grouped into three categories: (i) blockchain fundamentals and supply chain traceability, (ii) pandemic-induced vulnerabilities and blockchain responses, and (iii) blockchain for resilience in post-pandemic trade. This classification allowed a systematic examination of both the technical capabilities of blockchain and the contextual drivers of its adoption. In the third stage, thematic synthesis was carried out. The selected literature was analyzed to identify recurring themes such as trust-building, traceability, regulatory challenges, and interoperability issues. Comparative analysis highlighted differences between blockchain adoption in critical sectors such as healthcare, agriculture, and logistics. The synthesis revealed that while blockchain has proven effective in pilot projects, scalability and regulatory integration remain unresolved issues that must be addressed for broader adoption.

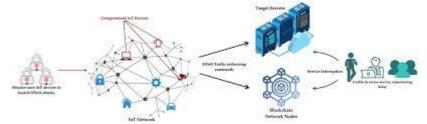


Figure 1: Blockchain-Enabled Supply Chain Transparency in Post-Pandemic Trade

The final stage was the development of a conceptual framework that connects blockchain capabilities with supply chain transparency and resilience outcomes. This framework illustrates how blockchain features such as decentralization, immutability, and smart contracts support trust, traceability, and efficiency in global trade. It also incorporates external factors such as regulatory policies, industry collaboration, and technological infrastructure, which influence the success of blockchain adoption. The framework provides a structured basis for analyzing blockchain's role in reshaping post-pandemic supply chains.

4. Results and Discussion

The analysis of literature and case studies highlights that blockchain adoption in supply chains provides multiple benefits in the post-pandemic trade environment. One of the most important findings is the improvement in **traceability and authenticity**. Blockchain enables end-to-end visibility by recording each stage of product movement, from raw material sourcing to final delivery. This level of transparency minimizes risks associated with counterfeit goods, especially in pharmaceuticals and food industries, where authenticity directly affects public health and consumer trust.

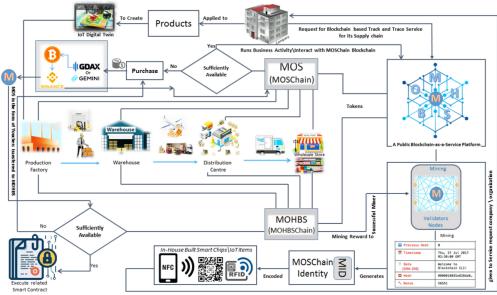


Figure 2: Blockchain-Enabled Results in Post-Pandemic Supply Chains

The pandemic accelerated demand for verifiable supply chain data, and blockchain-based traceability systems have proven to be highly effective in ensuring safe logistics. Another significant result is blockchain's role in **building trust among stakeholders**. Decentralized ledgers reduce dependence on intermediaries and central authorities by ensuring that all parties can access the same tamper-proof records. This fosters greater collaboration between manufacturers,

distributors, regulators, and consumers, especially in global supply chains spanning multiple jurisdictions. Trust, which was severely eroded during the pandemic due to delays and misinformation, is restored through the immutability and transparency that blockchain offers. The results also reveal blockchain's contribution to **resilience and sustainability**. Smart contracts automate compliance, ensuring that regulatory and contractual requirements are met without delays. By providing real-time data, blockchain helps companies respond faster to disruptions, thus strengthening resilience. Furthermore, blockchain supports sustainability goals by verifying responsible sourcing, monitoring carbon footprints, and ensuring compliance with international environmental standards. This dual role of resilience and sustainability positions blockchain as a long-term strategic asset in post-pandemic trade networks.

However, challenges remain substantial. High implementation costs and technical interoperability issues are among the most frequently cited barriers. Many blockchain platforms are not yet compatible with each other, creating fragmented ecosystems that limit seamless global adoption. Regulatory uncertainty across different jurisdictions also complicates integration, as global trade involves multiple legal frameworks. Additionally, small and medium enterprises, which form the backbone of many global supply chains, face financial and knowledge-related hurdles in adopting blockchain solutions. These challenges highlight the need for supportive policy frameworks, industry collaboration, and scalable technical solutions. Overall, the results suggest that while blockchain has demonstrated strong potential in enhancing supply chain transparency, its full benefits can only be realized through coordinated efforts addressing financial, technical, and regulatory barriers.

5. Conclusion

This study analyzed the role of blockchain technology in enhancing supply chain transparency in the post-pandemic global trade environment. The findings demonstrate that blockchain provides significant advantages in terms of traceability, trust-building, and resilience, which are critical in mitigating vulnerabilities exposed during the COVID-19 crisis. By recording transactions on a decentralized and immutable ledger, blockchain ensures product authenticity, reduces the risks of counterfeiting, and restores confidence among stakeholders. The results further show that blockchain contributes to sustainability goals by verifying responsible sourcing and monitoring environmental indicators, aligning with broader global trade priorities. Despite these opportunities, challenges remain considerable. High costs of implementation, technical interoperability issues, and regulatory uncertainties across different jurisdictions limit blockchain's large-scale adoption. Furthermore, organizational resistance and limited technical expertise, particularly among small and medium enterprises, pose additional barriers. Overcoming these challenges requires coordinated efforts by policymakers, industry leaders, and international organizations. Development of common standards, cost-sharing mechanisms, and targeted capacity-building programs will be essential to accelerate adoption.

The paper concludes that blockchain is not merely a crisis-driven response but a **strategic enabler for resilient**, **transparent**, **and sustainable supply chains** in the post-pandemic era. Its integration into global trade networks will depend on addressing the identified barriers while leveraging its unique capabilities to foster accountability and trust. Future research should focus on empirical studies across industries and geographies to validate blockchain's effectiveness at scale and to design models for its equitable and inclusive adoption.

References

- 1. Abeyratne, S., & Monfared, R. P. (2016). Blockchain ready manufacturing supply chain using distributed ledger. International Journal of Research in Engineering and Technology, 5(9), 1–10.
- 2. Ahram, T., Sargolzaei, A., Sargolzaei, S., Daniels, J., & Amaba, B. (2017). Blockchain technology innovations. 2017 IEEE Technology & Engineering Management Conference (TEMSCON), 137–141.
- Angappa, G., Gunasekaran, A., & Subramanian, N. (2020). Resilient supply chain design and operations post-COVID-19: Lessons from blockchain adoption. International Journal of Production Research, 58(18), 5293– 5305.
- 4. Behnke, K., & Janssen, M. F. W. H. A. (2020). Boundary conditions for traceability in food supply chains using blockchain technology. International Journal of Information Management, 52, 101969.
- 5. Biswas, K., & Gupta, R. (2019). Analysis of barriers to implementing blockchain in supply chain. Journal of Manufacturing Technology Management, 30(8), 1557–1585.
- 6. Casino, F., Dasaklis, T. K., & Patsakis, C. (2019). A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telematics and Informatics, 36, 55–81.

- 7. Chang, S. E., Chen, Y. C., & Lu, M. F. (2019). Supply chain re-engineering using blockchain technology: A case of smart contract based tracking process. Technological Forecasting and Social Change, 144, 1–11.
- 8. Chowdhury, M. J. M., Colman, A., Kabir, M. A., Han, J., & Sarda, P. (2019). Blockchain as a platform for logistics and supply chain operations. Springer Proceedings in Business and Economics, 211–222.
- 9. Deloitte. (2020). COVID-19: Managing supply chain risk and disruption using blockchain. Deloitte Insights.
- 10. Dobrovnik, M., Herold, D. M., Fürst, E., & Kummer, S. (2018). Blockchain for and in logistics: What to adopt and where to start. Logistics, 2(3), 18.
- 11. Francisco, K., & Swanson, D. (2018). The supply chain has no clothes: Technology adoption of blockchain for supply chain transparency. Logistics, 2(1), 2.
- 12. Hackius, N., & Petersen, M. (2017). Blockchain in logistics and supply chain: Trick or treat? Proceedings of the Hamburg International Conference of Logistics (HICL), 3–18.
- 13. IBM. (2021). Rebuilding trust in global trade with blockchain. IBM Institute for Business Value Report.
- 14. Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: Extending the supply chain resilience angles toward survivability. International Journal of Production Research, 58(10), 2904–2915.
- 15. Kamble, S. S., Gunasekaran, A., & Sharma, R. (2020). Modeling the blockchain-enabled traceability in agriculture supply chain. International Journal of Information Management, 52, 101967.
- 16. Kouhizadeh, M., Saberi, S., & Sarkis, J. (2021). Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers. International Journal of Production Economics, 231, 107831.
- 17. Kshetri, N. (2018). Blockchain's roles in meeting key supply chain management objectives. International Journal of Information Management, 39, 80–89.
- 18. Leng, J., Ruan, G., Jiang, P., Xu, K., Liu, Q., Zhou, X., & Liu, C. (2020). Blockchain-empowered sustainable manufacturing and product lifecycle management. Sustainability, 12(6), 2280.
- 19. Lin, J., Shen, Z., Zhang, A., & Chai, Y. (2018). Blockchain and IoT based food traceability for smart agriculture. Journal of Food Engineering, 277, 21–32.
- 20. PwC. (2020). Time for trust: How blockchain will transform business and the economy by 2030. PwC Report.
- 21. Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). Blockchain technology and its relationships to sustainable supply chain management. International Journal of Production Research, 57(7), 2117–2135.
- 22. Schmidt, C. G., & Wagner, S. M. (2019). Blockchain and supply chain relations: A transaction cost theory perspective. Journal of Purchasing and Supply Management, 25(4), 100552.
- 23. Sheel, A., & Nath, V. (2019). Effect of blockchain technology adoption on supply chain adaptability, resilience, and sustainability. Journal of Business Research, 101, 627–640.
- 24. Treiblmaier, H. (2018). The impact of the blockchain on the supply chain: A theory-based research framework and a call for action. Supply Chain Management: An International Journal, 23(6), 545–559.
- 25. World Economic Forum. (2022). Blockchain for supply chains: Enhancing transparency and resilience in global trade. WEF Report.