International Journal of Advanced Engineering Application
Volume No.2 Issue No 8 Aug 2025
ISSN NO:3048-6807

State Estimation in Power Systems Using
Kalman Filtering Techniques

Rohit Kumar’, Divya Singh?, Nikhil Chauhan?®, Pradeep Tiwari*, Kritika Sharma®
12345 Department of Electrical Engineering, Government Engineering College, Jabalpur, Madhya Pradesh, India

Abstract

State estimation is a vital function in modern power system operation and control, providing the system operator with
accurate, real-time information about the network's operating condition. Conventional state estimation methods, such
as Weighted Least Squares (WLS), often face challenges under dynamic conditions and in the presence of
measurement noise. This paper presents a detailed investigation into the application of Kalman Filtering (KF)
techniques for state estimation in power systems. Both standard Kalman Filter (KF) and Extended Kalman Filter
(EKF) approaches are discussed in terms of their performance, accuracy, and computational efficiency. Simulation
results demonstrate that Kalman filtering techniques offer significant improvements in accuracy and robustness
compared to conventional methods, particularly under dynamic load variations and noisy measurement environments.
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1. Introduction

The operation of large-scale power systems depends on accurate and reliable information about system states such as bus
voltages, phase angles, and line flows. State estimation forms the backbone of the Energy Management System (EMS),
enabling real-time monitoring, fault detection, and optimal power flow calculations. Traditional state estimation methods,
particularly the Weighted Least Squares (WLS) technique, have been widely used due to their simplicity and effectiveness
in static conditions. However, modern power networks are increasingly dynamic owing to the penetration of renewable
energy resources, varying load demands, and complex interconnections. These dynamics present challenges to
conventional estimation approaches, which are not inherently designed to handle system uncertainties and measurement
noise.

In this context, Kalman Filtering techniques emerge as powerful tools, offering dynamic state estimation by recursively
processing noisy measurements to provide optimal estimates of the system states. The Kalman Filter (KF) is particularly
useful in linear systems with Gaussian noise, while the Extended Kalman Filter (EKF) extends this capability to nonlinear
models typical of power system operations. Their recursive nature allows real-time updates, making them well-suited for
practical power system control centers. The ability of Kalman filtering methods to track time-varying states and reject
noise effectively highlights their importance in modern smart grid operations, where resilience, accuracy, and adaptability
are paramount.

2. Literature Review

Research in state estimation for power systems has evolved significantly over the past few decades. Early works were
dominated by deterministic methods such as WLS, which assumed static system conditions and exact measurements.
While these approaches provided acceptable results in small and stable grids, their limitations became apparent in large
interconnected systems subjected to frequent disturbances.

The introduction of stochastic approaches, particularly the Kalman Filter, marked a breakthrough in addressing
uncertainties. Researchers such as Schweppe pioneered the application of Kalman Filtering in power systems during the
1970s, demonstrating its superiority in handling noisy and incomplete measurements. Later studies extended these
concepts through the Extended Kalman Filter (EKF), which addressed nonlinearities in the measurement and system
models. More recently, variations such as the Unscented Kalman Filter (UKF) and Particle Filters have been explored
for even higher accuracy in nonlinear, non-Gaussian conditions.

Practical applications have also been reported in smart grid environments, where renewable energy integration and
distributed generation introduce significant variability. Kalman Filtering methods have been shown to effectively estimate
system states under sudden wind or solar output fluctuations. Furthermore, hybrid approaches combining Kalman Filters
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with artificial intelligence techniques such as neural networks and fuzzy logic have gained attention for their adaptability
in highly uncertain systems.

The reviewed literature consistently highlights that Kalman Filtering methods provide superior dynamic performance
compared to classical estimation techniques, making them increasingly indispensable for future power system operation
and management.

3. Methodology

The methodology adopted in this research focuses on implementing Kalman Filtering techniques for real-time state
estimation in power systems. The power system model is first formulated in a discrete-time state-space representation,
where the system dynamics and measurement models are defined. The state vector includes bus voltages and phase angles,
while the measurement vector contains quantities such as power flows, power injections, and bus voltage magnitudes
obtained from phasor measurement units (PMUs) and conventional SCADA systems.
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Figure 1: Flowchart of the Kalman Filtering-based state estimation process

In the standard Kalman Filter, the estimation process consists of two stages: prediction and correction. In the prediction
stage, the system model forecasts the next state based on previous estimates and known inputs. In the correction stage,
the forecasted state is updated using the difference between actual measurements and predicted measurements. This
recursive approach allows the filter to continuously refine the state estimates despite noisy measurement data. For
nonlinear measurement functions, the Extended Kalman Filter (EKF) is applied, where the nonlinear functions are
linearized around the current estimate using a first-order Taylor expansion. This enables effective tracking of
nonlinearities inherent in power system models.

To wvalidate the methodology, a test system based on a 5-bus distribution network was simulated using
MATLAB/Simulink. Noisy measurements were introduced to replicate realistic field conditions. Both KF and EKF were
implemented, and their performance was evaluated by comparing estimated states with actual system states under varying
load conditions. The methodology flow is depicted in Figure 1, while the system model of the 5-bus test network is shown
in Figure 2.

11597

Figure 2: Single-line diagram of the 5-bus power system model used for simulation
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4. Results and Discussion

Simulation results of the 5-bus system using the standard Kalman Filter (KF) show that the algorithm effectively reduces
the impact of measurement noise. For instance, when Gaussian noise with a standard deviation of 0.05 p.u. was
introduced, the KF successfully tracked the system states with a mean error below 1%. Figure 3 illustrates the comparison
between the actual and estimated bus voltage magnitudes using KF, showing close agreement and fast convergence.
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Figure 3: Actual vs. estimated bus voltages using standard Kalman Filter

In scenarios involving nonlinear measurement functions, such as power flow equations, the Extended Kalman Filter
(EKF) provided superior performance compared to the standard KF. The EKF was able to track variations in bus angles
and voltages with greater accuracy under rapidly changing load conditions. As depicted in Figure 4, the EKF maintained
a low estimation error even during sudden load fluctuations, demonstrating its robustness in dynamic system

environments.
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Figure 4: Estimation error comparison between KF and EKF under nonlinear load variations

The robustness of KF and EKF was further compared by analyzing the Root Mean Square Error (RMSE) across multiple
noisy scenarios. Figure 5 presents the RMSE values of state estimation using WLS, KF, and EKF methods. While WLS
exhibited an error of about 4.6%, the KF reduced it to 1.2%, and the EKF further improved accuracy to 0.7%. This
confirms the effectiveness of Kalman Filtering techniques in handling noisy and dynamic environments better than

conventional methods.
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Figure 5: RMSE comparison of WLS, KF, and EKF techniques

5. Conclusion

The study demonstrates that Kalman Filtering techniques, particularly the Extended Kalman Filter (EKF), provide a
reliable and efficient approach for state estimation in power systems. By incorporating recursive prediction and correction
mechanisms, the Kalman Filter effectively mitigates the influence of measurement noise and provides accurate estimates
of system states. Simulation results on a 5-bus test network confirmed that both KF and EKF outperform the traditional
Weighted Least Squares (WLS) method in terms of accuracy and robustness.

The standard KF exhibited significant noise suppression capabilities, reducing estimation errors to nearly one-fourth of
those obtained with WLS. Meanwhile, the EKF handled nonlinearities in power flow equations effectively, maintaining
stability and accuracy under dynamic load conditions. The reduction of RMSE to as low as 0.7% highlights the potential
of EKF as a powerful tool for real-time state estimation in modern power systems.

Overall, the findings suggest that Kalman Filtering can play a vital role in enhancing situational awareness, improving
power system stability, and supporting the transition towards smart grids and renewable energy integration. Future work
can focus on adaptive and unscented Kalman Filters to handle highly nonlinear models and integrate wide-area
measurement systems for large-scale networks.
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