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Abstract 

The rapid proliferation of botnets, armies of compromised machines controlled by malicious actors remotely, has played a 

pivotal role in the increase in cyber-attacks, such as Distributed Denial-of-Service (DDoS) attacks, credential theft, data 

exfiltration, command-and-control (C2) activity, and automated exploitation of vulnerabilities. Legacy botnet detection 

methods, founded on signature matching and deep packet inspection (DPI), are rapidly becoming a relic of the past because 

of the prevalence of encryption schemes like TLS 1.3, DNS-over-HTTPS (DoH), and encrypted VPN tunneling. These 

encryption mechanisms conceal packet payloads, making traditional network monitoring technology unsuitable for botnet 

detection. Faced with the challenge, ML-based botnet detection mechanisms have risen to the top. Existing ML-based 

approaches, however, are marred by two inherent weaknesses: (1) Lack of granularity in detection because most models are 

based on binary classification, with no distinction of botnet attack variants, and (2) Uninterpretability, where high-

performing AI models behave like black-box mechanisms, which limits trust in security automation and leads to high false 

positives, thereby making threat analysis difficult for security practitioners. 

 

To overcome these challenges, this study proposes an AI-based, multi-class classification botnet detection system for 

encrypted network traffic that includes Explainable AI (XAI) techniques for improving model explainability and decision 

transparency. Two datasets, CICIDS-2017 and CTU-NCC, are used in this study, where a systematic data preprocessing 

step was employed to maximise data quality, feature representation, and model performance. Preprocessing included 

duplicate record removal, missing and infinite value imputation, categorical feature transformation, and removal of highly 

correlated and zero-variance features to minimise model bias. Dimensionality reduction was performed using Principal 

Component Analysis (PCA), lowering features of CICIDS-2017 from 70 to 34 and those of CTU-NCC from 17 to 4 for 

maximizing computational efficiency. Additionally, to deal with skewed class distributions, Synthetic Minority Over-

Sampling Technique (SMOTE) was employed to synthesise minority class samples to offer balanced representation of botnet 

attack types. 

 

For CICIDS-2017, we used three machine learning algorithms: Random Forest (RF) with cross-validation (0.98 accuracy, 

100K samples per class), eXtreme Gradient Boosting (XGB) with Bayesian optimisation (0.997 accuracy, 180K samples per 

class), and our recently introduced Hybrid K-Nearest Neighbours(KNN) + Random Forest (RF) model, resulting in state-

of-the-art accuracy of 0.99 (180K samples per class). The CTU-NCC dataset was divided across three network sensors and 

processed separately. Random Forest (RF), Decision Tree (DT), and KNN models were trained independently for each 

sensor, and to enhance performance, ensemble learning methods such as stacking and voting were applied to combine the 

results from each of the sensors. The resulting accuracies were as follows: (Random Forest Stacking: 99.38%, Random 

Forest Voting: 99.35% ), (Decision Tree Stacking: 99.68%, Decision Tree Voting: 91.65%), and (KNN Stacking: 97.53%, 

KNN Voting: 97.11%). Explainable AI (XAI) techniques like SHAP (SHapley Additive exPlanations) and LIME (Local 

Interpretable Model agnostic Explanation) were integrated to provide enhanced interpretability in eXtreme Gradient 

Boosting and our Hybrid KNN+Random Forest model, which provided explanations for model decisions and enhanced 

analyst confidence in the system prediction. 

 

Our key contribution is the Hybrid KNN+Random Forest system with 0.99 accuracy and provision of explainability. We 

illustrate an accurate, scalable, and deployable AI-based solution for botnet attacks. Our experimentation shows that the 

multi-class classification method greatly assists in botnet attack discrimination, and Explainable AI (XAI) helps enhance 

clarity and is thus a strong, practical solution in the real case of botnet detection in an encrypted network scenario. 
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I. Introduction 

 

1.1 Background: Understanding Botnets and Their Threats 

 

A botnet is a group of infected devices, usually called bots or zombies, that are infected with malware and under remote control 

by a botmaster or bot herder. These devices can be personal computers, servers, and Internet of Things (IoT) devices such as 

smart appliances in a smart home and security cameras used without their owners' permission in cyber attacks. Botnets are 

frequently used for large-scale automated attacks, utilizing thousands or millions of infected devices to enhance their impact. 

Common threats associated with botnets include Distributed Denial-of-Service (DDoS) attacks, which flood target systems 

with excessive traffic, brute force attacks, data exfiltration, spam distribution, financial fraud, and credential stuffing. 

 

Modern botnets have become more advanced tools with capabilities of evading detection and takedown. Contrary to static C2C 

servers that are easily detectable and blockable , today's botnets use peer-to-peer architecture where the bots communicate with 

each other in a decentralized manner, making mitigation much more challenging. They use encryption-based communication 

protocols such as TLS 1.3, DNS-over-HTTPS (DoH), and VPN tunneling that render legacy deep-packet inspection and 

signature-based detection futile [1]. Botmasters use Domain Generation Algorithms (DGAs) that create dynamically new C2C 

domains that are not blockable by legacy blocking mechanisms. Encryption, decentralization, and dynamic domain rotation 

have made detection very challenging [1] and one of the remedies is designing AI-based detection frameworks that are capable 

of detecting botnet traffic even in the presence of encrypted networks 

 

1.2 The Need for Botnet Detection 

 

Botnet detection is the process of identifying infected network devices and disabling malicious outbound traffic. The 

conventional detection method depends on signature-based inspection and deep packet inspection (DPI), where patterns in 

network traffic are analyzed for attack signatures. As encryption technologies have become prevalent, DPI-based detection is 

no longer effective since new encryption algorithms prevent packet payload access. TLS 1.3, DNS-over-HTTPS (DoH), and 

VPN tunneling encrypt malicious traffic, making conventional network monitoring mechanisms ineffective .[1] 

 

To address these limitations, machine learning (ML) and artificial intelligence (AI)-driven detection systems are gaining 

popularity. Unlike signature-based systems, ML-based systems examine network metadata, statistical traffic patterns, and 

behavioral anomalies and can thus detect new attacks and adapt to new botnet variants. Despite their advantages, AI-driven 

botnet detection frameworks face multiple challenges, necessitating further improvements in attack differentiation and 

interpretability. 

 

1.3 Challenges in Existing ML-Based Botnet Detection 

 

While ML-based Intrusion Detection Systems (IDS) have greatly improved botnet detection, the existing models face two 

major issues. The first one is Limited Attack Differentiation Due to Binary Classification, as the majority of ML-based botnet 

detection platforms classify network traffic as malicious or benign using binary classification models [2]. While adequate for 

general threat detection, these models cannot identify specific botnet attacks, i.e., DDoS, brute force, data exfiltration, and C2 

communication. Such lack of granularity lowers the efficacy of threat prioritization and mitigation. The second major issue is 

Opaque AI Decision-Making and Lack of Explainability, as most AI-driven botnet detection models operate as black boxes 

and do not provide sufficient insight into their decision-making process [3]. It is difficult for security analysts to know why a 

specific network flow is labeled malicious, raising false positive rates and lowering confidence in AI-based security solutions 

[4]. 

 

1.4 Proposed Approach 

 

To address these challenges, we propose a multi-class classification model for botnet detection in encrypted networks, 

integrating Explainable AI (XAI) techniques for enhanced explainability and trust. We employ two publicly available datasets 

[1], CICIDS-2017 [5] and CTU-NCC [6], and follow a strict data preprocessing pipeline to ensure high-quality feature 

representation and optimal model performance. The preprocessing steps include duplicate entry elimination, which removes 

redundant entries to prevent bias during model training, and handling missing and infinite values, where median imputation is 

used for missing values and infinite values are handled by assigning NaN (Not a Number). Additionally, encoding categorical 

features converts non-numeric attributes into machine-learning-suitable representations, and feature correlation analysis 

identifies and removes strongly correlated features [4] to avoid multicollinearity and overfitting. Furthermore, dimensionality 
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reduction is applied using Principal Component Analysis (PCA), reducing the CICIDS-2017 [5] dataset from 70 to 34 features 

and the CTU-NCC [10] dataset from 17 to 4 features to enhance computational efficiency [7]. Finally, the class imbalance [4] 

was handled with the help of SMOTE by generating artificial samples for minority attack classes. 

 

1.5 Machine Learning Models and Performance 

 

To evaluate our approach, we trained multiple ML models on both datasets. For the CICIDS-2017 [5] dataset, Random Forest 

(RF) with Cross-Validation achieved 0.98 accuracy with 100K samples per class. Similarly, eXtreme Gradient Boosting (XGB) 

with Bayesian Optimization attained 0.997 accuracy with 180K samples per class. Moreover, the Hybrid KNN+RF model with 

Cross-Validation recorded the highest accuracy of 0.99 in our experiments with 180K samples per class. To enhance model 

interpretability, SHAP, and LIME were embedded into the XGB and Hybrid KNN+RF models, providing detailed insights into 

feature contributions and model decision rationales. For the CTU-NCC [6] dataset, which involved processing data from three 

network sensors separately, ensemble techniques were used to enhance the performance of each model. The Random Forest 

stacking and voting models showed accuracy scores of 99.38% and 99.35%, while the Decision Tree recorded 99.68% for 

stacking and 91.65% for voting. Similarly, KNN achieved 97.53% for stacking and 97.11% for voting. 

 

1.6 Contributions and Impact 

 

This study introduces a new hybrid K-Nearest Neighbors + Random Forest (KNN+RF) model with an unprecedented accuracy 

of 0.99 while incorporating Explainable AI (XAI) for greater interpretability. Our contributions include a cutting-edge Hybrid 

KNN+RF model, which achieves a record 0.99 accuracy, beating the existing models for botnet detection. Moreover, we present 

a multi-class classification framework that, unlike existing binary classification models, discriminates between multiple botnet 

attack types, enhancing specificity and detection rates. Moreover, by Explainable AI (XAI) integration using SHAP and LIME, 

our model provides greater transparency and interpretability, allowing security analysts to validate and trust AI-driven threat 

detections. Ultimately, this paper offers a scalable, high-accuracy, and explainable AI-driven botnet detection system, 

presenting a deployable real-world security solution for encrypted networked domains. 

 

II. Literature Survey 

 

The AI-powered botnet detection space has seen remarkable progress in recent years. Conventional detection techniques, 

including signature-based intrusion detection and deep packet inspection (DPI), have become increasingly ineffective with the 

ubiquitous use of encryption protocols like TLS 1.3, DNS-over-HTTPS (DoH), and VPN tunneling. Since encryption makes 

packet payload inspection challenging, machine learning-based detection techniques have become more significant by 

examining network flow patterns and behavioral anomalies [5]. Nevertheless, despite remarkable progress, most critical 

challenges are still unsolved, affecting model accuracy, interpretability, and real-world usability. 

 

To review existing literature and highlight research gaps, we conducted a detailed review of  20 studies on various AI-based 

botnet detection methods. The following sections explain the most prevalent methods, their shortcomings, and the research 

gaps addressed in this work. 

 

2.1 AI-Based Approaches for Botnet Detection 

 

Several studies have investigated different machine learning-based approaches for botnet detection in network traffic. One of 

the most common approaches is binary classification models, which classify traffic as either benign or malicious [2]. The study 

in [8] employed Graph Convolutional Networks (GCN) to fuse flow and topology features for botnet detection.  Meng, 

Xiaoyuan, [8] noted that existing botnet detection methods usually only use one kind of features, i.e., flow features or topology 

features, which overlooks the other type of features and affects the model performance. Meng, Xiaoyuan, [8] proposed 

constructing communication graphs from network traffic and representing nodes with flow features, achieving a recall rate of 

92.90% and an F1-score of 92.76% for C2 botnets. However, this approach primarily differentiates between malicious and 

non-malicious traffic, failing to identify specific attack types. To address this limitation, multi-class classification models 

provide a more refined approach by identifying different botnet attack types. The research in [9] proposed stacking Deep 

Convolutional Neural Networks (CNN), Bi-Directional Long Short-Term Memory (Bi-LSTM), Bi-Directional Gated Recurrent 

Unit (Bi-GRU), and Recurrent Neural Networks (RNN) for botnet attack detection. Using the UNSW-NB15 [8] dataset, A. K. 

Kumar et al. [9] reported a testing accuracy of 99.76% and stated that the proposed model accurately provides for the intricate 

patterns and features of botnet attacks, achieving a high ROC-AUC curve value of 99.18%. However, severe class imbalance 

in [10] and [4] limits their robustness, leading to poor classification performance on minority attack types. Beyond traditional 
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botnet detection, a critical area of research is the identification of encrypted network traffic, where AI models rely on network 

flow-based features instead of packet payload inspection due to the prevalence of encrypted communication protocols. The 

study in [7] proposed a framework for encrypted malicious traffic detection, noting that the popularity of encryption 

mechanisms poses a great challenge to malicious traffic detection, as traditional detection techniques cannot work without 

decrypting encrypted traffic. The framework is a two-layer detection system that outperforms classical deep learning and 

traditional machine learning algorithms, such as ResNet and Random Forest [7]. However, despite its advantages, high false 

positive rates and low real-world verification hinder its practical application. 

 

 

2.2 Identified Research Gaps and Contributions 

 

Based on our literature review, we have identified five major research gaps from, [1], [2], [7], [8], and [9]. This research 

primarily fills in two of the most critical research gaps, which are required to continue botnet detection research. The first is 

multi-class classification and anomaly detection, where most ML-based botnet detection models are still binary [2] 

classification-based [8], failing to distinguish between specific botnet attack types such as DDoS, brute force, data exfiltration, 

and command-and-control (C2) activities. Binary classifiers [8] lack actionable information as they only detect malicious 

presence and not the type of botnet attacks, hence effective mitigation plans are difficult. To address this, we introduce a multi-

class classification model that can identify and classify multiple types of botnet attacks in encrypted traffic. With the inclusion 

of SMOTE for class balancing [4], the model enhances detection in all attack types, avoiding majority class bias and overall 

detection performance enhancement. The second major gap is Explainable AI (XAI) for encrypted traffic analysis. AI-based 

botnet detection models are not explainable, given that they act as black-box classifiers exhibiting low transparency in decision-

making. Security practitioners must understand why AI-driven decisions are being taken, especially in mission-critical 

cybersecurity operations, where a missed threat leads to operational downtime or false positives. Therefore, we applied SHAP 

and LIME to XGB and Hybrid KNN+RF models to provide transparency to the decision-making process in the models. These 

two techniques provide insights into feature importance, allowing security analysts to validate and trust AI-driven threat 

detection with fewer false positives. 

 

2.3 Comparative Analysis of Existing Work 

 

Table I presents a comparative analysis of existing studies [7], [8], [9] on botnet detection, highlighting key aspects such as 

classification type, dataset, XAI integration, and model accuracy. 

 

TABLE I: COMPARISON OF EXISTING BOTNET DETECTION MODELS 

 

Study Approach Dataset 
Classification 

Type 

XAI 

Integration 

Best 

Accuracy 
Key Limitation 

Deeply 

Fused GCN 
Graph Neural 

Networks 

(GCN) 

CTU-13 Binary No 0.96 
Missing Multiclass 

Classification 

Feature 

Mining ML 
RF, XGB 

CICIDS-

2017 [9] 
Binary No 0.98 

High false positive 

rate 

Hybrid 

Deep 

Learning 

LSTM, CNN Bot-IoT Multi-Class No 0.95 

Poor classification 

for minority attack 

classes 

Our 

Approach RF, XGB, 

KNN+RF 

CICIDS-

2017 [9] & 

CTU-NCC 

[10] 

Multi-Class 
Yes (SHAP 

& LIME) 
0.99 

State-of-the-art 

accuracy with XAI 

 

2.4 Conclusion of Literature Review 
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Although AI-based botnet detection has seen advancements, significant challenges persist. Most existing models use binary 

classification, failing to discriminate between individual attack types [2]. Few studies integrate explainable AI, making ML-

based cybersecurity models uninterpretable and untrustworthy. This study explicitly addresses two significant research gaps 

by introducing multi-class classification, which improves accuracy and detection granularity by classifying various botnet 

attack types, unlike binary classification models. Additionally, we integrate Explainable AI (XAI) for encrypted traffic analysis. 

Our framework facilitates model interpretability by combining SHAP and LIME, enabling increased trust, transparency, and 

analyst adoption. While our current setup is offline, the future is toward real-time deployment with minimal inference latency. 

Adaptive feature selection and federated learning are also areas of future research to make botnet detection adaptive to emerging 

threats, scalable, and privacy-preserving. Our Hybrid KNN+RF approach (accuracy 0.99) surpasses current approaches and 

offers a deployable, scalable, and explainable AI-based botnet detection system. This work lays a strong foundation for AI-

enabling cybersecurity solutions by bridging the gap between the practical usability of real-world approaches in encrypted 

networks and high-accuracy detection. 

I. Methodology 

3.1 Dataset Description and Preprocessing 

In this study, we utilize two datasets to detect and classify multiple botnet attack types in encrypted network traffic. The CICIDS 

dataset is a well-known dataset containing real-world network traffic data 

with labeled attack and benign instances. It consists of 2.8 million rows 

and 79 features, covering eight different types of network activity classes. 

Additionally, we integrate the CTU and NCC datasets to form the CTU-

NCC Combined dataset, which provides a diverse range of botnet attack 

traffic. This dataset contains 14.7 million rows and 18 features, also 

categorized into eight unique network activity classes. These datasets were 

selected in order to enable a thorough assessment of multi-class botnet 

identification in various network configurations.  

   

 

Figure 1: CICIDS Attack Type Distribution 

 

The datasets underwent a number of preprocessing and cleaning procedures in order to be ready for classification. Duplicate 

records were identified and removed to maintain data integrity, while infinite values were replaced with appropriate numerical 

values to avoid computational errors. Label encoding was used to convert categorical attack labels into numerical values, 

ensuring compatibility with machine learning models, and additional categorical encoding was applied where necessary. 

Feature selection was conducted using correlation analysis, retaining attributes that exhibited strong positive correlations with 

specific botnet attack types to enhance classification performance. 

Given the class imbalances in botnet attack types, data sampling techniques were applied to achieve a more balanced 

distribution between attack and benign instances. Outlier detection and handling were performed to assess their impact on 

model training, using techniques such as removing extreme outliers or transforming skewed features while preserving attack-

specific patterns. Features with zero variance were eliminated to reduce dimensionality and computational overhead. 

Figure 2: CTU-NCC Attack Type Distribution 
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Standardization using z-score normalization was applied to ensure that all features contributed equally to the model and 

facilitated faster convergence in machine learning algorithms. 

To further optimize the feature space, Principal Component Analysis (PCA) was applied for dimensionality reduction while 

retaining the most informative components relevant to botnet detection. The number of principal components was selected 

based on variance retention criteria to achieve an optimal balance between dimensionality reduction and information 

preservation. Through these preprocessing and transformation steps, we ensured that the datasets were well-prepared for 

accurate and efficient multi-class botnet detection in encrypted network traffic. 

 

3.2 Model Implementation  

To classify network traffic and detect botnet activity, multiple machine learning models were implemented on the CICIDS 

dataset. The Random Forest Classifier was trained with 15 estimators, a max depth of 8, and 30 max features, and its 

performance was evaluated using 5-fold cross-validation. The XGBoost Classifier was optimized through Randomized Search 

with cross-validation, followed by Bayesian Optimization to refine hyperparameters for improved accuracy. Additionally, a 

Hybrid Model (Voting Classifier) was developed by combining K-Nearest Neighbors (KNN) and Random Forest using soft 

voting. This model incorporated feature scaling and classification through a pipeline, and its performance was assessed based 

on accuracy, precision, recall, and F1-score. 

For the CTU-NCC Combined dataset, models were first trained separately on three different sensors before being combined 

into ensemble models using Voting and Stacking. Individual sensor-based models included Random Forest (10 estimators, max 

depth of 6, no feature limit), Decision Tree (max depth of 8), and KNN (8 neighbors, distance-based weighting with the 

Manhattan distance metric), each evaluated using 5-fold cross-validation. The ensemble models combined sensor-specific 

models to enhance classification accuracy. A hard voting classifier was built using the three KNN models trained on separate 

sensors, while a stacking model used these KNN models as base estimators with Logistic Regression as the final estimator. 

Similarly, Random Forest and Decision Tree-based ensemble models were developed, following the same voting and stacking 

approach to leverage patterns from all three sensors. The ensemble models were evaluated on the test set to assess their 

effectiveness in improving classification performance. 

3.3 Explainability AI 

To enhance model interpretability, SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic 

Explanations) were employed. SHAP was used to analyze global feature importance in both XGBoost and Random Forest 

models, while local explanations for individual predictions provided insights into model decisions.LIME was used to visualize 

the influence of particular characteristics on classification results by explaining individual predictions for Random Forest and 

KNN classifiers. These explainability strategies made sure that the models were transparent, interpretable, and performance-

optimized, which made them useful for multi-class botnet detection in encrypted network traffic. 

III. Results 

 

 

4.1 CICIDS Dataset 

 

To compare performance among models for network intrusion detection, we trained and tested four classifiers using the CICIDS 

dataset for multi-class classification: Random Forest (RF), XGBoost with Random Search Optimization (XGB-RS), XGBoost 

with Bayesian Optimization (XGB-BO), and a Hybrid Model combining K-Nearest Neighbors (KNN) and Random Forest. 

Classifiers were compared on accuracy of classification, which revealed the Hybrid model outperformed the rest at 99.9% 

accuracy, followed by XGB-BO at 99.8%, XGB-RS at 99.7%, and Random Forest at 98.2%. Despite the Random Forest 

classifier showing robustness, it fell short of the rest due to the lack of iterative learning, fixed hyperparameters, and poor 

ability to capture complex interactions between features. Contrary to this, XGBoost with Random Search Optimization boosted 

precision by leveraging boosting algorithms, optimal hyperparameter tuning, and improved management of class imbalance. 

Additional improvement with Bayesian Optimization provided marginally improved results through optimal choice of 

hyperparameters, regularization operations, and balance of model complexity. The Hybrid model integrating KNN and Random 

Forest successfully captured local patterns and global robustness through ensemble voting, achieving an overall highest 

accuracy level. Through these observations, it was made clear that the power of ensemble learning and boosting approaches to 
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maximizing network intrusion detection ability exists with the Hybrid model being proven to possess the largest generalization 

ability among types of attacks. 

 

 

 

 

  

4.2 CTU-NCC Dataset 

To evaluate the effectiveness of different classification models for botnet detection, we implemented six ensemble-based 

models using Voting and Stacking techniques across three base classifiers: K-Nearest Neighbours (KNN), Random Forest 

(RF), and Decision Tree (DT). The models were assessed based on their classification accuracy, as shown in Table II. The 

results indicated that the KNN-based models performed decently by way of accuracy, where the KNN-Voting model achieved 

97.11% and the KNN-Stacking model marginally better at 97.53%. This slight improvement suggests that stacking, where the 

Figure 3: CICIDS Model Accuracies 

Figure 4: CICIDS Model Performance Across Attack Categories 
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predictions from numerous KNN models are aggregated and combined by a meta-learner, had better generalization when 

compared to majority voting. However, both KNN models were outperformed by tree-based ensembles due to KNN’s 

sensitivity to data distribution, computational complexity, and lack of inherent feature importance weighting. Random Forest-

based models demonstrated high performance, with the RF-Voting model achieving 99.35% accuracy and the RF-Stacking 

model slightly improving to 99.38%. The minimal difference between these models suggests that while stacking provides 

refinement, the inherent robustness of Random Forest through bagging, feature importance handling, and variance reduction 

already ensures strong performance. Decision Tree-based models exhibited the most significant variation, with the DT-Voting 

model scoring the lowest accuracy at 91.65%, while the DT-Stacking model achieved the highest accuracy of 99.68%. This 

drastic improvement highlights the vulnerability of individual decision trees to overfitting and the effectiveness of stacking in 

mitigating this issue by leveraging multiple weak learners and refining predictions through a meta-learner. These findings 

suggest that stacking generally outperforms voting, with the improvement being most pronounced in Decision Trees. Random 

Forest models were consistently good, and hence a safe bet for botnet detection, while Decision Trees gained the most from 

stacking, with a substantial improvement in their predictive power. While KNN models were good (~97%), they were surpassed 

by tree-based ensembles, probably because they could not learn complex feature interactions well. In general, the DT-Stacking 

model was the top performer with 99.68% accuracy, roving that a hierarchical stacking framework can be very effective for 

botnet detection, while RF-based ensembles were strong contenders because of their stability and consistency. 

Figure 5: CTU-NCC Model Accuracies 

Figure 6: CTU-NCC Model Performance Across Different Attack Classes 
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4.3 Explainability AI 

Understanding machine learning model decision-making is just as important as accuracy, especially in the field of 

cybersecurity, where transparency and trust are top priorities. Explainable AI (XAI) techniques were used in this research to 

the CICIDS dataset to examine our intrusion detection model's decision-making process. The primary objective was to learn 

about the model's reasoning for labeling certain network traffic as an attack and the most influential factors on these predictions. 

Utilizing XAI tools such as SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-Agnostic 

Explanations), we discovered significant features with a considerable influence on traffic classification. Some of the important 

findings included the importance of flow duration, as abnormally long network connections were likely to be indicative of 

suspicious traffic; the number of forward and backward packets, which were good indicators of malicious activity; packet 

length variance, whose extreme variance was often seen in conjunction with cyber attacks; and the use of source and destination 

ports, as abnormal port behavior was often found together with a specific type of attack. Visualization of the model's decision-

making process using SHAP plots and LIME explanations allowed greater appreciation of how normal traffic and attack traffic 

were distinguished. Clear patterns were discernible for threats like DDoS and brute force attacks, thereby making them easier 

to spot, while false positives became easier to understand, allowing us to improve the model by fine-tuning thresholds and 

optimizing feature selection. The incorporation of XAI not only enhanced the performance of the model by increasing accuracy 

and reducing false alarms but also allowed greater confidence in its decision-making by making it more transparent and 

interpretable. By using explainability techniques, we established a connection between effectiveness and trust, thereby making 

our intrusion detection system characterized by high accuracy and enhanced reliability and interpretability. 

 

 

 

 

Figure 7: LIME Graphs For KNN 
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Figure 8: Feature Value Graph For KNN 

Figure 11: LIME Graphs for Random Forest 

Figure 9: Feature Value Graph For Rf Figure 10: Feature Value Graph For XGB 
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Figure 12: SHAP Interaction Summary Plot For XGB 

Figure 13: SHAP Waterfall Plot For XGB 
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IV. Discussion 

Our study aimed to evaluate different machine learning models for network intrusion and botnet detection while also 

emphasizing the importance of explainability in cybersecurity. The results provide valuable insights into how different 

approaches perform under varying conditions and highlight the strengths and weaknesses of each method. 

 

5.1 Network Intrusion Detection (CICIDS Dataset) 

Figure 14: SHAP Graphs For Random Forest 

Figure 15: SHAP Plots For KNN 
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The comparison of various models with the CICIDS dataset indicated that the Hybrid model (KNN with Random Forest) was 

the most effective, with a remarkable accuracy rate of 99.9%. This achievement is attributed to the complementary strengths 

of KNN's capability to capture local patterns and Random Forest's capability to deal with complex feature interactions. These 

findings align with previous studies that have explored hybrid approaches for encrypted traffic detection, emphasizing their 

effectiveness in identifying malicious patterns in network traffic [3], [7]. 

Additionally, the XGBoost models—most notably the one optimized with Bayesian optimization—were particularly powerful, 

demonstrating the benefits of boosting methods and hyperparameter tuning. Studies using deep learning for network anomaly 

detection, such as the implementation of LSTM Autoencoders for IoT botnet detection [11], further reinforce the need for 

feature extraction and optimization techniques to improve accuracy. In contrast, the standard Random Forest model, despite 

widespread acknowledgement of its power, exhibited marginal underperformance due to its fixed hyperparameters and low 

flexibility which is consistent with findings in feature-based decision tree approaches that suffer from generalization issues 

when not carefully tuned [1]. These results affirm the efficiency of ensemble learning and optimization methods in enhancing 

network intrusion detection systems. 

5.2 Botnet Detection (CTU-NCC Dataset) 

When detecting botnet activity, stacking-based ensemble models consistently outperformed voting-based approaches, with 

Decision Tree Stacking achieving the highest accuracy of 99.68%. This result highlights the power of stacking in refining 

predictions, especially for weaker learners like individual Decision Trees, which tend to overfit. Similar stacking techniques 

have been explored for botnet detection using GNN-based methods [12] and hybrid feature selection strategies [4], both 

demonstrating improvements in classification accuracy. 

Interestingly, the Random Forest models performed well both with stacking and voting, a testament to their consistency in 

application to cybersecurity. The KNN models, even with decent accuracy rates (~97%), performed relatively poorly compared 

to tree-based methods, most likely due to them being data distribution-sensitive and computationally expensive. This is 

consistent with prior research indicating that KNN struggles with computational efficiency and data distribution sensitivity in 

network-based anomaly detection tasks [13]. Moreover, studies applying ResNet-18 for botnet classification [14] suggest that 

deep learning models may also struggle with encrypted traffic, requiring adaptations for improved performance. The findings 

suggest that while stacking is generally beneficial, its impact is most pronounced on models like Decision Trees, which benefit 

significantly from an ensemble approach. 

5.3 The Importance of Explainability in AI 

Apart from achieving high accuracy, our focus went beyond that to making the model decisions more interpretable using 

Explainable AI (XAI) techniques, namely SHAP and LIME. These techniques allowed us to determine the key factors 

influencing model predictions, such as flow duration, packet length variance, and port usage. By identifying feature importance, 

we were able to improve trust in the model’s predictions and reduce false positives—an approach supported by previous studies 

that emphasize the role of explainability in cybersecurity [1], [15]. By exposing the contribution of different features to 

classification labels, we were able to gain a better understanding of why certain network activities were being classified as 

attacks. This not only added to the model trust but also allowed us to further improve the model to reduce false positives and 

make better decisions. 

V. Conclusion and Future Scope 

6.1 Conclusion 

In this current study, we compared a variety of machine learning algorithms for identifying network intrusions and botnets and 

compared their accuracy based on the CICIDS and CTU-NCC datasets. The results showed that ensemble learning algorithms, 

such as stacking and hybrid models, significantly improved the accuracy of classification. The Hybrid KNN-Random Forest 

model attained the best accuracy (99.9%) for intrusion detection, while the Decision Tree Stacking model performed better 

than all the other models (99.68%) for botnet detection. The results reflect the importance of combining heterogeneous 

algorithms to provide effective representation for different data patterns and improve the robustness of the model. 
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In addition, we used Explainable AI (XAI) techniques, such as SHAP and LIME, to offer explanations of the reasons behind 

model outcomes. This helped us identify relevant features that impact predictions, hence enhancing the transparency and 

credibility of the model. By bridging the accuracy vs. transparency gap, we rendered our models not only effective but also 

understandable—a vital factor in the field of cybersecurity applications. 

In short, our study emphasizes the significance of ensemble learning, hyperparameter optimization, and model interpretability 

as fundamental ingredients in building secure AI-driven security solutions. The fusion of robust classification techniques and 

explanation techniques is a solid foundation for effective cybersecurity applications, thus ensuring high performance as well 

as stability in identifying network threats. 

6.2 Future Scope 

While our study achieved promising results, several areas can be explored further to enhance model performance and 

applicability in real-world scenarios: 

1. Real-Time Threat Detection: 

o Implementing the models in real-time network monitoring systems to detect intrusions as they occur. 

o Optimizing model inference speed for low-latency threat detection. 

2. Adaptive and Online Learning Models: 

o Developing models that can continuously learn and adapt to evolving cyber threats. 

o Incorporating reinforcement learning or online learning techniques to dynamically update model 

parameters. 

3. Integration with Deep Learning: 

o Combining deep learning architectures such as transformers or LSTMs with traditional machine learning 

to capture complex attack patterns. 

o Exploring CNNs for packet-level analysis in intrusion detection. 

4. Deployment in Large-Scale Networks: 

o Testing the models on enterprise-level and cloud-based network infrastructures. 

o Evaluating performance on heterogeneous datasets with diverse network traffic. 

By advancing in these directions, AI-driven network security solutions can become more robust, scalable, and capable of 

adapting to new attack vectors, ensuring continuous protection against cyber threats in real-world environments. 

Figure 16: Confusion Matrix Of Hybrid Model Figure 17: Confusion Matrix Of Decision Tree Stacking 
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