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Abstract 

Multi-state systems (MSSs) are often found in real-world applications where components or the system as a whole can 

exhibit multiple performance levels or states. This multi-state nature poses significant challenges for reliability 

evaluation. Multi-valued decision diagrams (MDDs) are effective for assessing the reliability of MSSs under the 

assumption that system parameters are deterministic. However, in many real-world scenarios, it is difficult to ascertain 

the precise values of such parameters due to epistemic uncertainty. This paper addresses MDD-based reliability 

analysis of MSSs by integrating both interval theory and fuzzy set theory to account for epistemic uncertainty. The 

proposed methods are applied to a high-speed train bogie system to verify their effectiveness, with the results showing 

that the proposed methods provide practical reliability assessments under uncertain conditions. 

Keywords: Multi-state system, multi-valued decision diagram, Epistemic uncertainty, Interval theory, Fuzzy set 

theory. 

 

1. Introduction 

Multi-state systems (MSSs), where components or the system can operate at multiple performance levels, are prevalent 

in various domains (Xing and Amari, 2015). Several methods have been developed for the reliability analysis of MSSs, 

including extensions of binary-state reliability models (Ramirez et al., 2004; Shrestha and Xing, 2008), Markov-based 

approaches (Cafaro et al., 1986), universal generation functions (Levitin, 2004; Nahas and Nourelfath, 2021), Bayesian 

networks (Zhou et al., 2006), simulation-based approaches (Pourhassan et al., 2021), and multi-valued decision diagrams 

(MDDs) (Xing and Dai, 2009). MDDs, as extensions of binary decision diagrams (BDDs), offer reduced computational 

complexity for large-scale MSSs (Xing and Amari, 2015). 

Recent advancements in MDD-based reliability analysis have focused on various applications, such as phased-mission 

systems (Li et al., 2018), cloud computing systems (Mo and Xing, 2021), and social networks (Zhang et al., 2020). 

Despite this progress, the impact of uncertainty, particularly epistemic uncertainty, has not been adequately explored in 

MDD-based studies. 

Epistemic uncertainty, which stems from incomplete knowledge or insufficient data, differs from aleatory uncertainty 

that arises from inherent randomness (Hu et al., 2021; Sarazin et al., 2021). Techniques such as interval theory 

(Sankararaman et al., 2011) and fuzzy set theory (Zadeh, 1965) have been used to model epistemic uncertainty. This 

paper integrates interval theory and fuzzy set theory into the MDD framework for MSS reliability analysis under 

epistemic uncertainty, proposing interval-MDD and fuzzy-MDD methods to address this issue. A case study involving a 

high-speed train bogie system demonstrates the applicability of the proposed methods. 

 

2. Preliminary Model of MDDs 

An MDD is a directed acyclic graph used to model the reliability of MSSs. The system's state is represented by leaf nodes 

('1' for operational, '0' for failure), while intermediate nodes represent system components with multiple performance 

states (Xing et al., 2015; Xing et al., 2019). The MDD models the system's behavior through an expression like (1): 

𝑓 = (𝑥 = 1)𝑓𝑥 = 1 + (𝑥 = 2)𝑓𝑥 = 2 + ⋯ + (𝑥 = 𝑛)𝑓𝑥 = 𝑛 = 𝑐𝑎𝑠𝑒(𝑥, 𝑓1, 𝑓2, … , 𝑓𝑛)𝑓 =  (𝑥 =  1)𝑓_{𝑥

= 1}  + (𝑥 =  2)𝑓_{𝑥 = 2}  + \𝑐𝑑𝑜𝑡𝑠 +  (𝑥 =  𝑛)𝑓_{𝑥 = 𝑛}  =  𝑐𝑎𝑠𝑒(𝑥, 𝑓_1, 𝑓_2,\𝑑𝑜𝑡𝑠, 𝑓_𝑛) 𝑓

= (𝑥 = 1)𝑓𝑥 = 1 + (𝑥 = 2)𝑓𝑥 = 2 + ⋯ + (𝑥 = 𝑛)𝑓𝑥 = 𝑛 = 𝑐𝑎𝑠𝑒(𝑥, 𝑓1, 𝑓2, … , 𝑓𝑛) 

where fxf_xfx represents the system's state for component xxx. Logical operations (AND, OR) combine sub-MDDs to 

form a complete system MDD (Xing et al., 2009), as shown in (2): 

𝑓 ∘ ℎ = 𝑐𝑎𝑠𝑒(𝑥, 𝑓1 ∘ ℎ1, ⋯ , 𝑓𝑛 ∘ ℎ𝑛)𝑖𝑓 𝑖𝑛𝑑𝑒𝑥(𝑥) = 𝑖𝑛𝑑𝑒𝑥(𝑦)𝑓 \𝑐𝑖𝑟𝑐 ℎ 

=  𝑐𝑎𝑠𝑒(𝑥, 𝑓_1 \𝑐𝑖𝑟𝑐 ℎ_1,\𝑐𝑑𝑜𝑡𝑠, 𝑓_𝑛 \𝑐𝑖𝑟𝑐 ℎ_𝑛) \𝑞𝑢𝑎𝑑 \𝑡𝑒𝑥𝑡{𝑖𝑓 𝑖𝑛𝑑𝑒𝑥}(𝑥)  

= \𝑡𝑒𝑥𝑡{𝑖𝑛𝑑𝑒𝑥}(𝑦)𝑓 ∘ ℎ = 𝑐𝑎𝑠𝑒(𝑥, 𝑓1 ∘ ℎ1, ⋯ , 𝑓𝑛 ∘ ℎ𝑛)𝑖𝑓 𝑖𝑛𝑑𝑒𝑥(𝑥) = 𝑖𝑛𝑑𝑒𝑥(𝑦) 
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Probabilities for each system state SkS_kSk are evaluated by recursively summing over all possible paths from the root 

to leaf node '1' (3): 

𝑃𝑘(𝑓) = 𝑝𝑥, 1(𝑡)𝑃𝑘(𝑓1) + ⋯ + 𝑝𝑥, 𝑛(𝑡)𝑃𝑘(𝑓𝑛)𝑃_𝑘(𝑓)  

=  𝑝_{𝑥, 1}(𝑡)𝑃_𝑘(𝑓_1)  + \𝑐𝑑𝑜𝑡𝑠 +  𝑝_{𝑥, 𝑛}(𝑡)𝑃_𝑘(𝑓_𝑛)𝑃𝑘(𝑓)

= 𝑝𝑥, 1(𝑡)𝑃𝑘(𝑓1) + ⋯ + 𝑝𝑥, 𝑛(𝑡)𝑃𝑘(𝑓𝑛) 

 
3. MDD-Based Uncertainty Reliability Analysis 

3.1 Interval-MDD Method 

When uncertainty exists in the probability values of system components, intervals can be used to represent these 

probabilities. Interval operations are defined as follows (4)-(8): 

[𝑎] ∘ [𝑏] = {𝑎 ∘ 𝑏 ∣ 𝑎 ∈ [𝑎], 𝑏 ∈ [𝑏]}[𝑎]  ∘ [𝑏]  =  {𝑎 ∘ 𝑏 | 𝑎 ∈ [𝑎], 𝑏 ∈ [𝑏]}[𝑎] ∘ [𝑏] = {𝑎 ∘ 𝑏 ∣ 𝑎 ∈ [𝑎], 𝑏 ∈ [𝑏]} 

𝐹𝑜𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒, 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑖𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑎𝑠: 

[𝑎] + [𝑏] = [𝑎 + 𝑏, 𝑎 + 𝑏][𝑎] +  [𝑏] =  [𝑎 + 𝑏, 𝑎 + 𝑏][𝑎] + [𝑏] = [𝑎 + 𝑏, 𝑎 + 𝑏] 

In the presence of epistemic uncertainty, the interval probabilities of each component are denoted 

as [𝑝𝑥, 𝑖](𝑡)[𝑝_{𝑥, 𝑖}](𝑡)[𝑝𝑥, 𝑖](𝑡), and system state probabilities are calculated accordingly. 

3.2 Fuzzy-MDD Method 

Fuzzy numbers, representing vagueness, are employed to model uncertainty. Triangular fuzzy numbers are commonly 

used, with their membership function defined in (10): 

𝐴(𝑥) = {𝑥 − 𝑎𝑏 − 𝑎, 𝑎 ≤ 𝑥 ≤ 𝑏𝑐 − 𝑥𝑐 − 𝑏, 𝑏 ≤ 𝑥 ≤ 𝑐0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝐴(𝑥)  =  〖{𝑐𝑎𝑠𝑒𝑠} \𝑓𝑟𝑎𝑐{𝑥 − 𝑎}{𝑏 − 𝑎}, & 𝑎 ≤

𝑥 ≤ 𝑏 \\ \𝑓𝑟𝑎𝑐{𝑐 − 𝑥}{𝑐 − 𝑏}, & 𝑏 ≤ 𝑥 ≤ 𝑐 \\ 0, & \𝑡𝑒𝑥𝑡{𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 〗{𝑐𝑎𝑠𝑒𝑠}𝐴(𝑥) = ⎩⎨⎧𝑏 − 𝑎𝑥 − 𝑎, 𝑐 − 𝑏𝑐 −

𝑥, 0, 𝑎 ≤ 𝑥 ≤ 𝑏𝑏 ≤ 𝑥 ≤ 𝑐𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Fuzzy arithmetic operations, such as addition and multiplication, are applied to calculate fuzzy system state probabilities. 

 

4. Case Studies 

A case study of a high-speed train bogie system is used to demonstrate the proposed methods. Major components of the 

bogie system and their states are defined in Table 1, while the five system states are outlined in Table 2. 

MDDs for the system being in different states are shown in Figures 3-6, and the system state probabilities are calculated 

using both the interval-MDD and fuzzy-MDD methods. Tables 4-6 present the results for different mileage values, 

showing that the fuzzy-MDD method provides more precise reliability estimates compared to the interval-MDD method. 

4. Case Studies 

To demonstrate the effectiveness of the proposed methods for handling epistemic uncertainty in the reliability evaluation 

of multi-state systems (MSSs), a detailed case study of a high-speed train bogie system is presented. The bogie system 

consists of several critical components, each capable of exhibiting multiple performance states due to various degradation 

modes. The reliability of the bogie system, therefore, relies on the combined performance of these components. In this 

study, we apply both the interval-MDD and fuzzy-MDD methods to analyze the system's reliability across different 

operating conditions. 

4.1 System Overview and Component States 

The high-speed train bogie system includes critical components like axles, wheels, air springs, and traction motors, which 

are essential for the safe and efficient operation of the train. Each of these components can exist in multiple states, ranging 

from fully operational to failed, with some components having intermediate degradation states. 

The state definitions for the key components in the bogie system are summarized in Table 1. For instance, the axle can 

either be operational or failed, while the wheel has four distinct states: operational, minor abrasion, severe abrasion with 

unmet standards, and severe abrasion meeting all standards. These multi-state components reflect the real-world 

degradation behavior of the bogie system during high-speed train operations. 

Table 1: Major Components in the High-Speed Train Bogie System 

Component State 1 State 2 State 3 State 4 

Axle Operational Failed - - 

Vertical Shock 

Absorber 

Operational Failed - - 

Wheel Operational Abrasion Stripped, not meeting 

standards 

Stripped, meeting all 

standards 
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Air Spring Operational Failed - - 

Traction Motor Operational Failed - - 

Table 2 defines the overall system states based on combinations of component states. The bogie system is considered to 

be in one of five states, ranging from full operational capacity to complete failure. For instance, in State 3, the system 

may have degraded wheels or failed air springs, but still functions in a reduced capacity. 

Table 2: Definition of Bogie System States 

System State Condition 

State 1 All components are fully operational 

State 2 Vertical shock absorber failed, other components operational 

State 3 One or more components (wheel, air spring, etc.) in degraded condition 

State 4 Severe degradation, multiple components degraded 

State 5 Complete failure, any critical components failed 

4.2 MDD Modeling of System States 

To model the reliability of the bogie system, Multi-Valued Decision Diagrams (MDDs) are generated for each of the 

system states. The MDDs capture the relationships between the various component states and system-level outcomes. 

Figures 3 through 6 show the MDDs for states 1 to 4, respectively. State 5, representing complete system failure, is 

implicitly evaluated as the complement of the probabilities for states 1 to 4. 

 

• Figure 3 illustrates the MDD for State 1, where all components are operational. In this case, each component is 

in its best possible state (operational), and the system is fully functional. 

 

• Figure 4 shows the MDD for State 2, where the vertical shock absorber has failed, but all other components 

remain operational. 

The MDD approach allows for efficient and accurate computation of the system’s reliability by systematically combining 

the probabilities of individual component states using logical operations (AND, OR). 

4.3 Reliability Evaluation Using Interval-MDD 

The interval-MDD method is applied to evaluate the reliability of the bogie system under epistemic uncertainty. The 

interval approach models uncertainty by representing the failure probabilities of components as intervals, rather than 

fixed values. This approach captures the range of possible outcomes due to uncertainty in the underlying component 

reliability data. 
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The state probabilities for the bogie system, denoted as Pr(Si)Pr(S_i)Pr(Si), are calculated based on the MDDs for each 

system state (Equations 17–21). For instance, the probability of being in State 1 is computed as the product of the 

operational probabilities for all components: 

𝑃𝑟(1) = 𝑃𝑟(𝐴1) × 𝑃𝑟(𝐵1) × 𝑃𝑟(𝐶1) × 𝑃𝑟(𝐷1) × … 𝑃𝑟(1)  

=  𝑃𝑟(𝐴_1) \𝑡𝑖𝑚𝑒𝑠 𝑃𝑟(𝐵_1) \𝑡𝑖𝑚𝑒𝑠 𝑃𝑟(𝐶_1) \𝑡𝑖𝑚𝑒𝑠 𝑃𝑟(𝐷_1) \𝑡𝑖𝑚𝑒𝑠 \𝑑𝑜𝑡𝑠𝑃𝑟(1)

= 𝑃𝑟(𝐴1) × 𝑃𝑟(𝐵1) × 𝑃𝑟(𝐶1) × 𝑃𝑟(𝐷1) × … 

 

4.4 Reliability Evaluation Using Fuzzy-MDD 

The fuzzy-MDD method extends the reliability analysis by incorporating fuzzy numbers to model epistemic uncertainty. 

In this approach, component failure probabilities are represented by triangular fuzzy numbers, which account for 

vagueness in the underlying data. The membership functions for the fuzzy numbers are defined as per Equation (10), with 

the midpoint representing the most likely value and the bounds representing the range of uncertainty. 

The system state probabilities are recalculated using the fuzzy-MDD method, following the same procedure as for the 

interval-MDD. The results, shown in Table 6, indicate that the fuzzy-MDD method provides more detailed information 

by capturing the full range of possible reliability outcomes, from the lower to the upper bounds of the fuzzy numbers. 

This added granularity allows decision-makers to better understand the uncertainty associated with the system's reliability 

performance. 

4.5 Comparison of Interval-MDD and Fuzzy-MDD Methods 

The results of the interval-MDD and fuzzy-MDD analyses reveal that both methods effectively account for epistemic 

uncertainty in the reliability evaluation of the bogie system. However, the fuzzy-MDD method offers more precise 

reliability estimates, as it captures not only the range of possible outcomes but also the most likely reliability values 

through the use of fuzzy numbers. 

 

4.6 Insights and Practical Implications 

The case study demonstrates that the proposed interval-MDD and fuzzy-MDD methods are effective tools for evaluating 

the reliability of MSSs under uncertainty. In the context of high-speed rail systems, where safety and reliability are 

paramount, these methods provide valuable insights into the degradation behavior of key components like the axle, 

wheels, and traction motor. 

By incorporating epistemic uncertainty into the analysis, railway operators can make more informed maintenance and 

operational decisions. For example, the results suggest that as the mileage of a high-speed train bogie system increases, 

the probability of system failure or degradation becomes more significant. This information can be used to schedule 

preventive maintenance activities before critical failures occur, ensuring both safety and cost-efficiency. 

 

5. Conclusion and Future Work 

This paper presented MDD-based methods for MSS reliability analysis under epistemic uncertainty, proposing both 

interval-MDD and fuzzy-MDD approaches. A high-speed train bogie system was analyzed to validate the methods. The 

fuzzy-MDD method was found to provide more accurate reliability estimates than the interval-MDD method. Future 

work will extend these methods to more complex systems and practical data sets. 
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