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Abstract: 

This paper provides a comprehensive survey of advancements made over the past decade in the field of vision-based 

target tracking for autonomous vehicle navigation. The introduction begins by highlighting the motivations and wide-

ranging applications of vision-based target tracking in autonomous vehicle navigation. These applications span 

various domains, underscoring the necessity for the development of robust algorithms capable of handling the diverse 

challenges faced by autonomous vehicles in dynamic environments. The discussion establishes that creating resilient 

vision-based tracking solutions is crucial for the efficient operation of autonomous systems. The review is organized 

into three primary categories: land, underwater, and aerial vehicles. Each category explores the specific techniques 

and methodologies developed for target tracking within its respective domain. For land-based autonomous vehicles, 

the focus is on approaches that manage obstacles, uneven terrains, and dynamic road conditions. In the context of 

underwater vehicles, challenges such as poor visibility, varying water conditions, and the need for energy-efficient 

operations are examined. For aerial vehicles, the discussion highlights the importance of precise tracking in three-

dimensional space, which is critical for applications like surveillance, delivery, and disaster response. Additionally, 

the paper delves into the growing trend of integrating data fusion techniques to enhance the performance and 

robustness of vision-based target tracking systems. By combining data from multiple sensors and modalities, data 

fusion helps address limitations like occlusion, noise, and environmental variability, thereby improving tracking 

accuracy and reliability. Finally, the paper identifies several research challenges that remain unresolved, including 

issues like computational efficiency, real-time processing, and adapting to highly dynamic environments. It also 

explores potential future research directions, such as leveraging advancements in artificial intelligence, deep learning, 

and multi-modal data integration to further enhance the capabilities of vision-based target tracking systems for 

autonomous navigation. 
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1. Introduction 

At present, the usage of autonomous vehicles is growing especially in applications such as manufacturing, hazardous 

materials handling, surveillance, etc. The basic task in any such application is the perception of the environment through 

one or more sensors. Processing of the sensor input results in a particular representation of the unknown environment, 

which can then be used for navigating and controlling the vehicle. Autonomous vehicle navigation in a certain 

environment is thus a quest that many researchers have tackled over the years. The general sensors used for autonomous 

vehicles include infra-red, sonar, laser, radar and so on [1]. For example, Patent [2] discusses a navigation and control 

system including an emitter sensor configured to locate objects in a predetermined field of view from a vehicle; 

Fujimura et al. [3] describe the techniques which make use of characteristics of infrared sensitive video data, in which 

heat emitting objects appear as hot spots. Compared to these types of sensors, vision sensors provide a whole new way 

for autonomous vehicles to create an image of the environment [4, 5, 6, 7]. Video images plus specialized computer 

vision algorithms can provide high resolution information concerning the shape or range of nearby objects and 

environment. Coupled with the availability of increased computational power, visual sensor information becomes not 

only appealing but also easily attainable in real-time. During the past ten years much research has gone into the area of 

computer vision for autonomous vehicles navigation [4]. Many algorithms and methods have been proposed, all with an 

ultimate common goal: to give intelligence to autonomous vehicles to interpret the visual information. If the research 

goal is to send an autonomous vehicle from one coordinate location to another, there is sufficient accumulated expertise 

in the research community today to design algorithms which could do that in a typical environment. But if the goal is to 

carry out the function-driven navigation, such as chasing or following moving targets, avoiding the obstacle which is 

somewhere in a given hallway and stopping at a stop sign (e.g. docking) under varying illumination and background 

conditions, it is still eons away. It is still the central research problem for vision based autonomous vehicle navigation 

that an autonomous vehicles must be aware of the position and dynamic information of the certain moving objects 

encountered in the environment. Therefore this paper reviews the recent techniques in vision based target tracking for 

autonomous vehicles navigation. There are, of course, many approaches, and the publications list will be too long if 
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including all of them. When people read such a broad survey paper, they will miss the key points and milestones. Thus 

this paper surveys only those contributions in the last decade that the authors believe are interesting and important. 

One thing to be mentioned is that normally CCD (Charge-Coupled Device) cameras are used as vision sensors for 

autonomous vehicles navigation. CCD cameras’ installation and maintenance costs are quite minimal and stereo CCD 

cameras can also provide the three-dimensional (3𝐷3D) scene analysis [5]. For example, a system and method is 

presented in [8] for efficiently locating in 3𝐷3D an object of interest in a target scene using video information captured 

by a plurality of CCD cameras. This system and method provide multi-camera visual odometry wherein pose estimates 

are generated for each camera by all of the cameras in the multi-camera configuration. The position and velocity of the 

target relative to the vehicle can be established continually by processing the stream of the cameras images, and this 

information can be used to navigate the vehicle. Generally the camera/object states in a tracking system can be divided 

into 4 categories [9]: 1) Stationary Camera, Stationary Object (SCSO), 2) Stationary Camera, Moving Object (SCMO), 

3) Moving Camera, Stationary Object (MCSO), 4) Moving Camera, Moving Object (MCMO). In the case of visual target 

tracking by autonomous vehicles, both the camera and object move with respect to each other and it is the MCMO state. 

Before going into the algorithms details, the applications of visual target tracking for autonomous vehicles navigation are 

summarized in the next section. 

1.1. Applications of Visual Target Tracking for Autonomous Vehicles Navigation 

The moving target’s position and velocity information can aid the autonomous vehicle to determine what constitutes its 

surroundings and what actions if necessary are to be taken. The potential applications of such visual target tracking 

systems are: autonomous vehicle navigation, map building, robot localization, path planning, obstacle avoidance, 

surveillance systems, intelligent transportation systems and human assistance mobile robots and so on [4]. 

 

Figure 1. Some applications of the visual target tracking system for autonomous vehicles navigation. (a) shows the 

general high way system. The visual target tracking based intelligent transportation system can be developed for road 

safety, vehicle avoidances and so on. (b) shows the mobile robots soccer (the image taken from the web site of Automation 

Laboratory at University of Mannheim). (c) shows the human assistance mobile robots (the image taken from the 

proceedings cover of IEEE ICRA 2005). The visual target tracking can help autonomous vehicles (mobile robots) to 

fulfill the tasks in all these applications. 

In intelligent transportation systems (ITS), object extraction and tracking serve as essential prerequisites for advancing 

intelligent autonomous vehicles and mobile robots (Figure 1). These processes enable various applications, including 

forward collision avoidance, where visual tracking of moving objects helps identify potential collision threats based on 

their relevance to the vehicle's intended path [10]. Beyond collision avoidance, visual target tracking can assist human 

drivers. For instance, it is instrumental in drowsy driver warning systems, where tracking the movement of objects around 

the vehicle allows driver assistance systems to alert drivers to potential collisions and other dangers [10]. 

Another application within ITS is the design of optimal trajectories for vehicles under normal driving conditions, such as 

overtaking a slower-moving vehicle on a predetermined road [11]. These applications demonstrate the multifaceted utility 

of object tracking in enhancing road safety and vehicle performance. 
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Path Planning and Autonomous Vehicle Navigation Path planning, a critical component of autonomous vehicle 

operations, involves the real-time design of a collision-free path while navigating dynamically moving objects within a 

limited sensing range [12]. This task is fundamental to robotics, requiring vehicles to be aware of their surroundings. One 

specialized application is Complete Coverage Path Planning (CCPP), also known as region filling or area covering, often 

used by cleaning robots in two-dimensional (2D) environments. In this context, visual target tracking ensures the vehicle 

traverses every area in its workspace while avoiding obstacles [13]. 

Patent innovations, such as those described in [14], present arrangements for obstacle detection in autonomous vehicles. 

These patents leverage advanced data manipulation techniques to enhance the accuracy of obstacle detection, thereby 

improving the operational efficiency of autonomous vehicles. For example, [15] details a mobile robot equipped with a 

range finder and stereo vision system, capable of autonomous navigation through urban terrain, map generation, and 

reconnaissance operations. 

Human Assistance Mobile Robotics Visual target tracking extends to human assistance robotics, where mobile robots 

equipped with communication, interaction, and behavioral mechanisms operate in environments shared with humans, 

such as museums or exposition areas [16, 17]. In these dynamic environments, obstacle avoidance becomes critical to 

ensure safe human-robot interaction. Collision avoidance problems in such settings can be addressed using position-based 

interaction techniques facilitated by visual target tracking [18]. 

Security and Surveillance Applications For security and surveillance, efficient positioning of multiple sensors is often 

required to cover large, structured environments. Autonomous vehicle-based trackers offer a compelling solution, 

reducing the number of sensors needed in a tracking network. These trackers can adapt to target movements and dynamic 

environmental changes by repositioning themselves as needed [19]. Such capabilities make them invaluable for 

monitoring and response in security scenarios. 

Underwater Environments and Autonomous Underwater Vehicles (AUVs) In underwater environments, visual target 

tracking is crucial for Autonomous Underwater Vehicle (AUV) navigation. For example, observing the behavioral 

patterns of marine life requires AUVs to follow and stay close to subjects, such as fish, over extended periods. Similarly, 

underwater exploration and maintenance tasks, like routine inspections of man-made systems, necessitate precise tracking 

and observation capabilities [21] (Figure 2). 

Research by Arjuna and Tamaki [20] introduces a sensor fusion technique for tracking and following underwater cables 

using video images, tested on the Twin-Burger 2 vehicle at the University of Tokyo (Figure 2). Further developments by 

Arjuna et al. [22] propose vision-based tracking systems for underwater docking applications. Other applications include 

obstacle avoidance and object identification in unstructured underwater environments. For instance, the U.S. Navy is 

investigating AUVs to accurately detect and classify underwater mines, critical for pre-landing operations in hostile 

territories [23]. 

These examples illustrate the extensive potential of visual target tracking across various environments, highlighting its 

integral role in enabling autonomous navigation, safety, and functionality across a wide spectrum of applications. 

 

http://www.ijaea.com/


                                                                                 International Journal of Advanced Engineering Application           
                                                                                                                                                 Volume No.2 Issue No 1 Jan 2025 
                                                                                                                                                                         ISSN NO:3048-6807 

www.ijaea.com                                                                                                                                          Page | 12 

Figure 2. Some applications of the visual target tracking system for AUV navigation. (a) shows the test bed AUV (Twin-

Burger 2) for the underwater cabal following (the image taken from [20]). (b) shows the underwater images of AUV 

docking (the image taken from [21]). 

• The mobile robots soccer [24, 25] (Figure 1). 

• Obstacle avoidance for the robot manipulators in factory automation doing repetitive and dull work [26]. 

• Obstacle avoidance for the robotics motion planning [27]. 

• The motion control of autonomous vehicles in the car manufacturing industry. Many car manufacturers plan to 

equip their vehicles in the near future with computer-aided visual target tracking capabilities for parallel parking 

or automatic stop-and-go mode in traffic jams [28]. 

In order to successfully achieve all the above applications, it is very useful and necessary for autonomous vehicles to 

have the knowledge of the 3𝐷3D dynamic information of the objects of interest in the environment. Therefore, it is very 

beneficial to write such a survey paper to highlight and summarize the recent interesting techniques on this topic. This 

rest of paper is organized as follows: In Section 2, the algorithms for autonomous land, underwater, aerial vehicles are 

reviewed separately. Next data fusion based methods for autonomous vehicles navigation are reviewed in Section 3. 

In Section 4, based on the previous reviews, remaining research problems are concluded and future research directions 

are identified. Section 5 draws the conclusion of this paper. 

In our paper various object tracking methods will not be fully covered, because it is really out of scope of our main topic 

for autonomous vehicles navigation. However Yilmaz et al. [29] survey most of state-of-art object tracking methods. In 

their paper, they also mention that object tracking can be widely used for vehicle navigation, such as video-based path 

planning and obstacle avoidance capabilities. They review: object representation methods; feature selection methods for 

tracking; object detection methods and object tracking methods such as Point Tracking, Kernel Tracking, Silhouette 

Tracking. This paper can be good supplements for our survey paper. 

2. Vision based Target Tracking for Autonomous Vehicles Navigation 

The targets of interest can normally be the moving cars, moving persons or any other moving objects which autonomous 

vehicles need to track for navigation. Here the visual target tracking methods are reviewed in three different categories 

based on the applications in the land, underwater and aerial environments. Generally autonomous land vehicles are more 

widely developed and used and more navigation algorithms are developed for them. So in this section the literature survey 

focuses more on the visual target tracking algorithms for autonomous land vehicles navigation. 

2.1. Visual Target Tracking for Autonomous Land Vehicles Navigation 

In general applications of visual target tracking for Autonomous Land Vehicles navigation include some sorts of 

landmarks tracking, people following, multiple mobile robots cooperation, vehicles localization and map building, visual 

target tracking with pan-tilt cameras platforms and so on. According to their applications, different methods are 

categorized and reviewed as follows. It should be pointed out that the classification in this part is not absolute because 

algorithms from different categories can be intergraded together to achieve the navigation goal. 

Visual Landmark Tracking for Autonomous Land Vehicles Navigation 

Visual landmark tracking is one kind of vision-based methods for autonomous land vehicles navigation. Landmarks are 

divided into two classes: natural or artificial. Generally natural landmarks are selected in the scenes in consideration of 

their particular characteristics. Autonomous vehicles learn those characteristics or keep the features of the landmarks in 

memory and recognize them using neural network or some matching techniques while they move [30, 31, 32]. Mosaic 

images of outdoor environments are also used for the image matching based method in [33]. 

On the other hand an artificial landmark is often designed with a specific pattern or color in consideration of its detection 

algorithm. For example, a landmark that has a bar code or a specific shape pattern such as the sine waves has been 

proposed. Recently, Briggs et al. [34] use the self-similar gray pattern landmarks for navigation and localization aids 

(Figure 3). In [35] Jang et al. propose a simple artificial landmark model, which can be used for the self localization of 

indoor mobile robots (Figure 3). In their paper an effective visual detection and tracking algorithm for this landmark is 

proposed. A pair of color points neighboring each other have been used as a sample to represent the probability density 

in the Condensation algorithm. Under the assumption of affine cameras and only with the information of a single 
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landmark in a single image, they have presented a localization algorithm to estimate the absolute position accurately. In 

[36] Wei et al. propose a visual landmark tracking algorithm for docking unicycle-like vehicles based on the hearing-

only information. An omni-directional panoramic camera is used to detect visual landmarks around the docking station 

and provide bearing (or heading) data for each observed landmark. In their method a robust and computationally cheap 

visual blob detection algorithm is proposed. The artificial landmarks used consist of two adjacent large color blobs. Using 

two adjacent color blobs improves the noise rejection over the single color blob extraction algorithms. In [37] Breed 

describes method and system for enabling semi-autonomous or autonomous vehicle travel includes providing a vehicle 

travel management system which monitors the location of vehicles in a travel lane and the location of the travel lane, 

creating dedicated travel lanes for vehicles equipped with the vehicle travel management system, and managing travel of 

vehicles in the dedicated travel lanes to maximize travel speed of vehicles and minimize collisions between vehicles. 

Normally, the robust extraction of natural landmarks is a difficult task. And the artificial landmark methods that use 

peculiar contour, color or edge information highly depend on the low-level image processing results, which are influenced 

by the noise and de-focus phenomenon very much. Also, artificial landmark methods are not robust under the geometrical 

background variations such as the rotation, camera zoom and viewing direction changes. 

 

Figure 3. (a) is taken from [34], which shows their self-similar landmark pattern with barcode for landmarks detection 

and tracking. (b) is taken from [35]. This figure shows the structure of landmark, which they use for the self localization 

of indoor mobile robots. 

Human Following for Autonomous Land Vehicles Navigation 

Several approaches are proposed to use visual target tracking for human following by autonomous vehicles. 

In [38] Hirai et al. present a visual tracking system for a human collaborative mobile robot. The robot tracks the human 

back and shoulder to follow a person. Normally it is not easy to keep tracking the human back if the background is so 

complex and cluttered. They solve the problem by choosing the texture of clothes and the human shoulder images as the 

template patterns to be detected and identified. This tracking system requires to know the special visual features of the 

target (the texture of the clothes and human shoulder). Such tracking systems are not suitable to track unknown objects 

appearing in an unknown situation. 

One kind of research work on autonomous vehicles human following can be found from Morioka et al. [39, 40, 41]. 

According to Morioka et al. [40]’s human-following work, an intelligent space (ISpace), which is an intelligent 

environment with many intelligent sensors, is provided. The autonomous vehicle cooperates with multiple intelligent 

sensors, which are distributed in the ISpace. The distributed sensors recognize the target human and the autonomous 

vehicle, and give control commands to the robot. CCD cameras are used as a kind of sensors of DINDs (Distributed 

Intelligent Network Devices) for ISpace. Location information of the human and autonomous vehicle is obtained by 

stereo vision processing and human do not need to hold any special tags (Figure 5). However there is a major drawback 

with this kind of human-following methods. The system strictly needs the ISpace. Normally for an unknown or 

unstructured environment, such an ISpace is not available, thus in order to achieve the visual target tracking, the vehicle’s 

onboard sensors should mostly provide the accurate target dynamic information. 

In [17] Jensen et al. design an autonomous vehicle, which at the same time executes a pre-programmed tour in a public 

exposition and allows for complex, collaborative interactions with the non-experienced visitors. In their system, they 
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have dedicated two tasks to gather the information of the human presence in a public environment: a color camera based 

face tracking and a motion tracking based on the information from the laser ranger finder. The main steps of visual face 

detection and tracking in their system include: the skin color detection; contour extraction and filtering; tracking. 

Information gathered from the face tracking together with the motion tracking helps to verify the presence of the visitors. 

In [42] Nishiwaki et al. present a humanoid walking control system that generates body trajectories to follow a given 

desired motion on-line. They implement the system by making the autonomous vehicle track and follow a moving person 

based on the stereo vision feedback. The visual tracking consists of 3 parts: a stereo vision processing for target detection 

and 3𝐷3D position estimation in the camera coordinates; a planning of the desired future torso movements during one 

step; a camera posture and gaze direction control with the self-motion compensation. While the autonomous vehicle and 

human are both moving, the color segmentation and thresholds are utilized to detect the relative human’s direction. Then 

a real-time depth map generation algorithm is employed to measure the distance to the human. 

Kwon et al. [43] present an efficient human following algorithm for an autonomous vehicle using two independent 

moving cameras. In order to control the camera’s pan/tilt motions, they have presented an image-based PTU control 

algorithm using a lookup table that stores the correspondences between the camera pan/tilt angles required to keep a 

target in the center of the image frame and the pixel displacements produced by the target in the image plain (Figure 4). 

The major problem with this method is that the object tracking is accomplished with a simple color histogram based 

algorithm. Using color information of the person’s specific appearance, it calculates the centers of masses of the 

segmented color-blobs in each of the two images that form the conjugate pair of images in a tracking sequence. The 

current viewing direction of each camera in their system is adjusted so that the center of mass becomes the center of the 

image frame. However, a change in illumination can induce shifts in the center of mass of the blob being tracked in the 

two camera images, which makes the target tracking fail. 

Ogata et al. [44] propose a tracking system employing a visually controlled aerial robot which recognizes the motion of 

the specified person. They propose the motion recognition technique employing MHIs and eigenspaces. The human 

region is extracted by its color information. 

One example of optical flow based autonomous vehicles human following systems can be referred to Doi et al. [45]. 

They propose a real-time navigation system which observes the human behavior and reacts to those actions. The system 

detects body parts as the moving areas, and a face region or region specific to human is then extracted in the detected 

area based on the skin color or the cloth color of the human. 

In conclusion all these human following methods detect and track human’s motion based on human’s special visual 

features or the additional sensors in the environment. It limits the applications of such algorithms to track unexpected or 

different objects in an unstructured outdoor environment. 
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Figure 4. (a) is taken from [40]. This figure shows Morioka et al.’s human following algorithm’s system setup and their 

experimental testing environment. Such an ISpace is specially designed for their algorithm. (b) is taken from [43], which 

shows their experimental environment for person following. Their system is designed specially based on the person 

clothes’ color. 

Visual Target Tracking for Autonomous Land Vehicles Localization and Map Building 

Localization and target-tracking are both challenging yet essential and have a wide range of applications in mobile 

robotics. Localization can be defined as determining the position of an object within a reference coordinate system, and 

tracking consists of constructing a trajectory given a collection of spatially and temporally coherent localizations. 

Localization, mapping and moving object tracking serve as the basis for scene understanding, which is a key prerequisite 

for making a robot truly autonomous. Simultaneous localization, mapping and moving object tracking (SLAMMOT) 

involves not only simultaneous localization and mapping (SLAM) in dynamic environments but also detecting and 

tracking these dynamic objects [46]. Several methods have been proposed using visual target tracking for autonomous 

vehicles localization and map building. 

In [47] Hajjawi et al. present an algorithm for visual position tracking of individual cooperative autonomous vehicles 

within their working environment. Initially, they present a technique suitable for visual servoing of an autonomous vehicle 

towards its landmark targets. Secondly, they present an image processing technique that utilizes images from a remote 

surveillance camera for localization of the robots within the operational environment. In their algorithm the surveillance 

cameras can be either stationary or mobile. The supervisory control system keeps tracking of relative locations of 

individual autonomous vehicles and utilizes relative coordinates information of autonomous vehicles to coordinate their 

cooperative activities. 

Burschka et al. [48] present a real-time mobile navigation system and an approach for the visionbased Simultaneous 

Localization and Mapping (SLAM) based on a second generation of the image processing library, XVision. They show 

how the multiple tracking and low-level image processing primitives for color, texture and disparity can be combined to 

produce vision-guided navigation systems. The applications they discuss make use of XVision capabilities to solve the 

temporal correspondence problem by tracking an image feature in a given image domain. 

In [49] Dao et al. present a simple linear method for localizing an indoor mobile robot based on a natural landmark model 

and a robust tracking algorithm. The landmark model consists of a set of three or more natural lines such as baselines, 

door edges and linear edges in tables or chairs to take the advantages of fast landmark detection. The canny operator and 
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Lucas-Kanade algorithm are used for the effectively detecting and tracking of the landmark model. Next, a quick 

localization method for autonomous vehicles from correspondent lines is proposed by adopting a linear technique. Based 

on assumptions on indoor environments, a complex nonlinear problem for the 3𝐷3D pose determination using lines is 

converted to an iterative linear problem, which makes it possible to apply the proposed algorithm for real-time 

applications. However, in their system the line detection methods are not quite accurate and robust and with some 

additional condition constraints. 

In the most recent work of [46], Wang establishes a mathematical framework to integrate SLAM and moving object 

tracking (Figure 5). He describes two solutions: SLAM with generic objects (GO), and SLAM with detection and tracking 

of moving objects (DATMO). SLAM with GO calculates a joint posterior over all generic objects and the robot. Such an 

approach is similar to existing SLAM algorithms, but with additional structures to allow for motion modeling of the 

generic objects. Unfortunately, it is computationally demanding and infeasible. Consequently, he provides the second 

solution, SLAM with DATMO, in which the estimation problem is decomposed into two separate estimators. By 

maintaining separate posteriors for the stationary objects and the moving objects, the resulting estimation problems are 

much lower dimensional than SLAM with GO. 

Normally autonomous vehicle is assumed to move in the environment with the prior knowledge of its location. The 

SLAM and autonomous vehicles target tracking are considered separately [10]. However it is believed by many that a 

solution to the SLAMMOT problem would expand autonomous vehicles applications in proximity to human beings where 

autonomous vehicles work not only for people but also with people. 

From the reviews in this part, the SLAM can be successfully integrated with visual target tracking methods to make 

autonomous vehicles work at high speeds under situations like the large crowded city urban environment [50]. As a future 

work, in order to make the vehicle fully autonomously navigate the environment, the SLAM problem can be considered 

more and more at the same time with the visual target tracking problem. 

 

Figure 5. These two figures are taken from [46]. (a) shows the relationship between SLAM and DATMO. The 

simultaneous localization, mapping and moving object tracking problem aims to tackle the SLAM problem and the 

DATMO problem at once. Because SLAM provides more accurate pose estimates and a surrounding map, a wide variety 

of moving objects are detected using the surrounding map without using any predefined features or appearances, and 

tracking is performed reliably with accurate autonomous vehicles pose estimates. SLAM can be more accurate because 

moving objects are filtered out of the SLAM process thanks to the moving object location prediction from DATMO. 

SLAM and DATMO are mutually beneficial. The left of (b) shows the Navlab11 testbed, which is used to test their 

Simultaneous Localization, Mapping and Moving Object Tracking algorithm. The right of (b) shows the sensors used for 

the testbed (SICK LMS221, SICK LMS291 and the tri-camera system). 

Visual Target Tracking with Pan-Tilt Camera Platforms in Autonomous Land Vehicles 

Ego-motion estimation or pan-tilt cameras’ motion control are one of the key issues in autonomous vehicles navigation, 

especially in demand for moving objects tracking. 
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In [51] Karlsson et al. develop a lightweight, robust real-time tracking system used on an experimental geo-referenced 

cameras platform. The purpose of their system is to study the benefits of combining image processing with navigation 

data that should be available from the control system of any AGV system. Their experiments show that by using a Kalman 

Filter the tracking algorithm can handle objects’ large movements between images and it becomes more resistant to the 

occlusions. However, their tracking system is designed mainly based on the image brightness, which gives much less 

robust performance under environmental lighting changes. 

The objective of the research work in [52] is to derive the orientation of a pan-tilt camera fitting a drone in order to track 

a target and to maintain its position in the middle of the image (Figure 6). To ensure real-time video operation, an 

algorithmic solution integrating a successive-step and multi-block search method is implemented, thus allowing tracking 

with complex target displacements (Figure 6). The micro-controller uses this information to manage the camera 

orientation. With a certain regularity in the evolution of the target model, this system is sufficiently robust to track 

deformable targets in real images. However their technique has limitations when the target is close to the cameras. Also 

only a simple linear interpolation method is carried out. The drone localization and attitude are not considered in the 

algorithm. In addition, the implementation of a 2𝐷2D visual camera control requires a priori knowledge of 

the 3𝐷3D target model. 

Tomono et al. [53] present a method of planning a path on which the autonomous vehicle with a pan-tile camera can find 

the target objects under spatial uncertainties. The object recognition is normally based on feature matching between 

models and the image data. However there are several problems in this method. For example, in the case that the salient 

features to identify the target object may center on their particular faces, the autonomous vehicle has to move around the 

object to find the features. If the possible locations of the target object are in a wide area, the robot has to move around 

the area to search the object. This paper addresses these problems by a probabilistic approach. Given an initial roughly-

planned path, the proposed method optimizes it with respect to the travel time, high pass-ability, and a high probability 

of finding the target. The method defines a path evaluation function based on these factors and finds a suboptimal path 

by solving the nonlinear optimization problem of the path evaluation function. Their method combines the visibility 

constraint and the conventional constraints of travel time and collision avoidance for autonomous vehicles navigation. 

Zhang et al. [54] develop a pan-tilt visual tracking system to dynamically track moving targets using vision-based control. 

The algorithm includes the color-based segmentation, data pre-processing and active parameters adjustment. Since 

computationally expensive techniques are inapplicable, they focus on the use of specifical color properties to identify the 

objects of interest. 

One of the major limitations in the pan-tilt cameras visual tracking system is that the cameras’s movements are rather 

complex with pan and tilt motions. In the above algorithms, the cameras’ complex motions are neglected or not considered 

enough in an accurate way. If the cameras’ self motion can not be precisely identified and integrated into the tracking 

system, then the visual target tracking performance will not reach a satisfactory level. 

Visual Target Tracking for Multiple Mobile Robots Cooperation Multiple mobile robots (autonomous vehicles) 

cooperation means that each mobile robot plans its path based on other robots’ navigation information. The robots 

cooperate with each other to complete navigation tasks. Several methods based on the visual target tracking have been 

proposed in this area. 

In [55] a real-time visual tracking algorithm for MRFS (Multiple Robot Fishes cooperation System) is described. They 

give a description of the operation process for the vision subsystem, and propose an adaptive segmentation method based 

on the color information. Color information is the foundation of their object identification. In MRFS, halls, obstacles and 

robot fishes are equipped with specified color properties. 

5. Conclusion 

In recent years, autonomous vehicles have seen widespread adoption across various industries and applications. As their 

utilization grows, the demand for advanced techniques to interpret and interact with the environment becomes 

increasingly critical. Autonomous vehicles need to process environmental data in smart, efficient, and robust ways to 

perform diverse tasks reliably. This paper demonstrates that vision-based target tracking offers a promising and effective 

solution for autonomous vehicle navigation, with significant potential for improvement and application. 

Over the past decade, considerable progress has been made in the development of vision-based target tracking systems 

for autonomous vehicles. This paper surveys some of the most notable and impactful algorithms from this period. First, 

it categorizes and reviews visual target tracking schemes tailored for land, underwater, and aerial vehicles, emphasizing 
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the unique requirements and challenges associated with each domain. Second, it highlights the growing importance of 

data fusion methodologies, showcasing their role in enhancing the performance and robustness of visual target tracking 

systems for autonomous navigation. 

Key Findings and Research Challenges 

While notable advancements have been achieved, several challenges remain that must be addressed to fully realize the 

potential of autonomous vehicles. One such challenge is ensuring the systems’ ability to operate effectively in diverse 

and unpredictable environments. Variations in lighting, weather, and terrain conditions can affect the performance of 

vision-based systems, and addressing these factors will require further innovation in robust algorithm design. 

Another key challenge is the integration of data from multiple sensors using data fusion techniques. By combining 

redundant information from various sources, data fusion enhances accuracy and reliability in target state estimation. 

However, developing algorithms that can adapt dynamically to changing conditions and computational constraints 

remains an area ripe for exploration. Robust data fusion methods are essential to ensuring that autonomous vehicles can 

respond effectively to real-time environmental inputs. 

Future Research Directions 

The future of vision-based target tracking in autonomous vehicles holds great promise. As technology advances, the 

following areas are expected to witness significant progress: 

1. Improved Algorithms: Developing algorithms that can handle complex and dynamic scenarios with high 

computational efficiency is a pressing need. Future research should focus on improving the adaptability and 

precision of vision-based tracking systems across different vehicle types and environments. 

2. Enhanced Data Fusion Techniques: Continued exploration into sophisticated data fusion methodologies will 

enable more accurate and reliable target tracking. Techniques that seamlessly integrate diverse sensor data while 

accounting for uncertainties will be pivotal. 

3. Real-Time Processing and Decision-Making: Advancements in real-time processing capabilities will allow 

autonomous vehicles to interpret their surroundings and make decisions faster and more effectively. Leveraging 

the latest hardware innovations, such as GPUs and dedicated AI accelerators, will be key to achieving this. 

4. Interdisciplinary Applications: Beyond transportation, vision-based target tracking can be extended to other 

domains, such as robotics, defense, and environmental monitoring. Investigating cross-disciplinary applications 

can open new pathways for innovation. 

5. Autonomous Collaboration: Exploring systems that allow multiple autonomous vehicles to collaborate in 

tracking and navigation tasks could lead to breakthroughs in fleet management and coordinated operations. 

Vision-based target tracking represents a pivotal component in the evolution of autonomous vehicles. With the continued 

development of robust algorithms and data fusion techniques, it is anticipated that autonomous vehicles will achieve a 

higher degree of environmental awareness, enabling them to sense their surroundings and track objects of interest with 

greater accuracy and efficiency. In the near future, advancements in this field will pave the way for autonomous systems 

that operate seamlessly and intelligently, meeting the demands of diverse and complex applications. 
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