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Abstract: 

Recent years have witnessed a significant surge of interest in the design and development of local algorithms for 

solving various network tasks, particularly due to their critical importance in the study and application of wireless 

networks. These local algorithms, characterized by their reliance on limited and localized information, are essential 

for ensuring efficient and scalable network operations. In this work, we specifically focus on the behavior and 

performance of algorithms operating under very low locality constraints, where each node has access to minimal 

information about its immediate neighborhood. Despite the inherent limitations imposed by such restricted locality, 

we successfully propose local constant-ratio approximation algorithms for solving several fundamental problems in 

location-aware Unit Disk Graphs (UDGs). These problems include the Minimum Dominating Set (MDS), Connected 

Dominating Set (CDS), Maximum Independent Set (MIS), and Minimum Vertex Cover (MVC). The proposed 

algorithms demonstrate that even with constrained locality, it is possible to achieve effective approximations for these 

challenging combinatorial problems in the context of wireless networks. Furthermore, this study contributes to the 

theoretical understanding of local algorithms by establishing the first-ever lower bounds on their performance for the 

aforementioned problems within a location-aware UDG setting. These bounds provide valuable insights into the trade-

offs between locality and the achievable solution quality, offering a deeper understanding of the limitations and 

potential of local algorithms in practical scenarios. By addressing both algorithmic solutions and theoretical limits, 

this work not only advances the state of the art in local algorithm design for wireless networks but also lays a 

foundation for future research aimed at further exploring and optimizing locality-aware approaches in distributed 

systems. 
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1. Introduction 

In wireless networks, especially in ad hoc settings, the absence of a central authority to coordinate network traffic 

necessitates decentralized approaches. Devices in such networks must form structures, such as communication 

backbones, by exchanging information locally. Due to the typically vast size of these networks, it is impractical for any 

single node to have complete knowledge of the entire network. This constraint highlights the importance of local 

algorithms, where the status of a vertex vvv (e.g., its inclusion in a dominating set, independent set, etc.) depends solely 

on the vertices within a fixed number of edges (hops) from vvv. Importantly, this locality parameter remains independent 

of the overall network size. 

Wireless networks are often modeled using Unit Disk Graphs (UDGs)—undirected graphs in which two vertices are 

connected by an edge if and only if their Euclidean distance is at most one unit. UDGs effectively capture the geometric 

and spatial constraints of wireless networks. In our model, each node is assumed to have knowledge of its geographic 

position in the plane, a reasonable assumption given the growing prevalence of positioning systems like GPS. 

In wireless networks, dominating sets play a crucial role in topology control. Nodes are often grouped into clusters, with 

a designated cluster-head managing communication within the cluster and facilitating interactions with other clusters. 

The set of these cluster-heads forms a dominating set in the network graph. For efficient communication between 

clusters, it is essential for this dominating set to be connected, leading to the concept of a connected dominating set. To 

enhance network efficiency and reduce interference, it can be beneficial for cluster-heads to be non-adjacent, forming a 

maximal independent set. Additionally, the minimum vertex cover problem is another critical graph-theoretic 

challenge relevant to wireless networks. 

While numerous algorithms have been proposed to address these tasks, there is a notable gap in our understanding of 

lower bounds for the approximation ratios achievable by local algorithms. Such bounds are essential for assessing the 

feasibility and limitations of local algorithms under specific locality constraints. In this paper, we aim to bridge this gap 

by investigating the fundamental restrictions imposed on algorithmic performance when locality is constrained. This 
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work not only contributes to the theoretical foundation of local algorithms but also provides insights into their practical 

implications for the design of efficient and scalable wireless network solutions. 

1.1. Related Work 

The first results about local algorithms were given by Linial [2]. He gives the first bounds on locality distances for 

constructing a maximal independent set and a 3-coloring in an n-cycle. He also proves that at least 𝑑−−√d colors are 

needed for coloring a d-regular tree with radius r when the locality is restricted to 2r/3. In [3] Naor and Stockmeyer 

provide a framework for local algorithms for Locally Checkable Labeling Problems (LCL). All problems which we 

discuss in this paper are LCLs. In his book [4], Peleg gives a locality sensitive perspective of distributed algorithms. 

In general graphs all problems which we study - dominating and connected dominating set, indepen-dent set and vertex 

cover - are NP-hard [5]. Apart from vertex cover they do not even admit constant ratio approximation algorithms [6, 7]. 

For vertex cover there are several 2-approximation algorithms known, e.g., [8]. When restricting the case to unit disk 

graphs, the problems remain NP-hard [9], but constant ratio approximations [10] and PTASs [11, 12, 13] are known. 

However, all these algorithms are global in the sense that in order to determine whether a given vertex is in the computed 

set, we need knowledge of the entire graph. When looking for local algorithms, Kuhn et al. [14] proposed local 

approximation schemes for maximum independent set and dominating set for growth-bounded-graphs. This class of 

graphs in-cludes UDGs. However, in these algorithms the status of a vertex depends on the vertices which are up to O (log 

|V|) hops away from it, which is not local in our sense. Gfeller and Vicari presented a distributed PTAS for dominating 

set with the same locality properties [15]. In [16] the authors provide a marking process in conjunction with two dominant 

pruning rules in order to reduce the size of a dominating set. 

In [17] Czyzowicz et al. presented the first local constant ratio approximation algorithms for our set-ting with performance 

ratios 5 and 7.453 + ϵ for dominating and connected dominating set, respectively. The locality distances of the dominating 

set algorithm is 11, the locality for the connected dominating set algorithm is not given in the paper. In [18] Wiese and 

Kranakis presented local PTASs for these two problems. However, their locality distances, though constant, can be very 

large. 

1.2. Results of this paper 

In this paper we try to assess the impact of locality on the algorithmic design of important computa-tional tasks, like 

dominating set, connected dominating set, vertex cover, and independent set, in wireless networks. For arbitrary locality 

distances we show the first lower bounds for possible approximation ra-tios of local algorithms for all problems 

mentioned above in the setting of location aware nodes. 

We also investigate the power of algorithms with very low localities. It turns out that despite the fact we are looking only 

at locality one we can still design constant ratio approximation algorithms for dominating set, independent set, and vertex 

cover. We prove that for connected dominating set there is no constant ratio algorithm with locality distance one. But we 

present such an algorithm with locality distance two. 

In the proofs for the lower bounds we mostly employ unit disk graphs on a line (unit line graphs). In order to assess our 

bounds for each problem we present a local algorithm with locality one in unit line graphs. These algorithms achieve 

significantly better approximation ratios than the local algorithms for general unit disk graphs with this locality. 

All results including trade-offs between approximation ratios and bounds are presented . 

1.3. Organization of the paper 

The remainder of this paper is organized as follows: First we give some basic definitions and pre-liminaries. In the 

following sections we discuss one problem per section: dominating set, connected dominating set, independent set, and 

finally vertex cover. For each problem we prove our lower bounds for approximation ratios of local algorithms with 

arbitrary locality distance. We also give our algorithms for unit disk graphs and unit line graphs. For our dominating set 

algorithm on unit disk graphs we give an example which shows that the analysis of the approximation ratio is tight. 

1.4. Preliminaries 

A Unit Disk Graph (UDG) is an undirected graph which has an embedding in the plane such that two vertices are 

connected by an edge if and only if their Euclidean distance is at most one. 

Definition 1.   

A Unit Line Graph (ULG) is a unit disk graph in which all vertices have the same y-coordinate. 

Let G = (V, E) be an undirected graph. A set D ⊆ V is called a dominating set if each vertex in V is either in D or adjacent 

to a vertex in D. A set CD ⊆ V is a connected dominating set if it is a dominating set such that the subgraph induced 

by CD is connected. We call a set I ⊆ V an independent set if it does not contain two adjacent vertices. Finally a set V 

C ⊆ V is called a vertex cover if for every edge e = (u, v) it holds that either u ∈ V C or v ∈ V C. 
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Definition 2.   

For two vertices u and v let d(u, v) be the hop-distance between u and v, that is the number of edges on a shortest path 

between these two vertices. 

For a set of vertices V′ ⊆ V we define dV′ (u, v) to be the hop-distance between u ∈ V′ and v ∈ V′ in the subgraph induced 

by V′. The hop-distance is not necessarily the geometric distance between two vertices. Denote by Nr(v) = {u ∈ V|d(u, v) 

≤ r} the r-neighborhood of a vertex v. For ease of notation we define N0(v) := {v}, N(v) := N1(v) and for a set V′ ⊆ V we 

define N (V′) = ∪v′∈V′ N (v′). Note that v ∈ N(v). 

Denote by the locality distance (or short the locality) of an algorithm the minimum k such that the status of a 

vertex v (e.g., whether or not v is in a dominating or connected dominating set) depends only on the vertices in Nk(v). 

2. Dominating Set 

We propose a local approximation algorithm that achieves a factor-12 approximation for the dominating set problem 

on unit disk graphs. The algorithm's correctness, approximation ratio, and locality—exactly one hop—are rigorously 

proven. Furthermore, we demonstrate the tightness of our approximation factor analysis by providing a corresponding 

lower bound. To broaden our understanding, we establish lower bounds for local algorithms with an arbitrary locality 

distance kkk, using unit line graphs as the basis for our analysis. Lastly, we present a local algorithm specifically 

designed for dominating sets on unit line graphs, with a one-hop locality and an approximation factor of 3. 

2.1 Tiling of the Plane 

The foundation of our algorithm involves a systematic tiling of the plane using hexagons, designed to meet the following 

criteria: 

1. Each vertex in the graph is contained within exactly one hexagon. 

2. All vertices within a single hexagon are connected by edges. 

To achieve these properties, the plane is partitioned into hexagons with a diameter of one. Ambiguities arise when vertices 

lie on the borders of hexagons; these are resolved using a defined rule set, illustrated in Figure 1 (b): the right borders of 

hexagons, excluding their upper and lower apexes, are included as part of the hexagon, while the remainder of the border 

is excluded. The tiling begins with the origin (0,0)(0, 0)(0,0), positioned at the center of a hexagon classified as class 1. 

This structured tiling ensures a clear geometric foundation, enabling the algorithm to operate with precision and simplicity 

while maintaining its locality constraint. The hexagonal layout is particularly advantageous for ensuring connectivity and 

achieving the desired approximation guarantees within the algorithm's framework. 

 
Figure 1. (a) A part of the tiling of the plane into hexagons. (b) One hexagon of the tiling. The bold lines indicate the 

parts of its border that belong to this hexagon. 

This is similar to the tiling used in [17] but in contrast to their tiling our hexagons do not have any information that 

distinguishes them from one another (class numbers, etc.). 

2.2. Algorithm for Unit Disk Graphs 

Now we present a local algorithm for dominating set on unit disk graphs (UDGs) with locality one. Let G = (V, E) be a 

unit disk graph. The algorithm works as follows: In each hexagon h the vertex v which is closest to the center of h is 

assigned to the dominating set D. Ambiguities are resolved by e.g., choosing the vertex with the smallest x-coordinate. 

We refer to this as Algorithm 1. 
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We prove the correctness of Algorithm 1 in Theorem 1. 

Theorem 1.   

Let G be a unit disk graph. Algorithm 1 has the following properties: 

1. 

The computed set D is a dominating set for G. 

2. 

Let DOPT be an optimal dominating set. It holds that |D| ≤ 12 · |DOPT|. 

3. 

Whether or not a vertex v is in D depends only on the vertices at most one hop away from v, i.e. Algorithm 1 is local. 

4. 

The processing time for a vertex v is linear in the number of vertices adjacent to v. 

Algorithm 1: Local algorithm for finding a dominating set in a unit disk graph 

1 // Algorithm is executed independently by each node v; 

2 // Denote by Vh all vertices in h; 

3 Find all vertices in N(v) and compute Vh; 

4 if v is the vertex closest to the center of h among all v′ ∈ Vh then become part of D else Do not become part of D 

Proof.   

We first prove that D is indeed a dominating set for G. Let h be a non-empty hexagon and denote by Vh all vertices in h. 

As Vh ≠ ∅ it holds that one vertex v ∈ Vh is the vertex which is closest to the center of h. So v ∈ D and v dominates all 

vertices in h. 

Now we prove that for an optimal dominating set DOPT it holds that |D| ≤ 12 · |DOPT|. In the following we prove that for 

any vertex in DOPT there can exist at most 12 hexagons that have a vertex at (Euclidean) distance at most one from it. (In 

fact this holds for all vertices but we need the claim only for vertices in DOPT.) Consider a vertex v ∈ DOPT in a hexagon h. 

Without loss of generality we assume that v is in the gray area of h or in the center of h . In both cases for a 

vertex v′ ∈ D that is adjacent to v it holds that v′ must be in one of the 9 or 12 hexagon in the respective figure (for the 

case of v being in the center of h check the resolving method for ambiguities at the border of hexagons.Since at most one 

vertex per hexagon was assigned to D there are at most 12 vertices in D that are adjacent to v. (Note that in the case 

where v is in the gray area the resolving method for ambiguities does not come into play.) 

 
Figure 2. A vertex v in the center of hexagon h can only be adjacent to vertices in these 9 hexagons. Note that due to the 

resolving method for vertices at the border of hexagons, the vertices v′ and v″ belong to the 

hexagons h′ and h″ respectively (and are adjacent to v). 
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Figure 3. A vertex in the gray area excluding the center of h can only be adjacent to vertices in these 12 hexagons. 

So for each vertex v ∈ DOPT it holds that it is adjacent to at most 12 vertices in D. Since DOPT is a dominating set all 

vertices in D must be adjacent to at least one vertex in DOPT. This leads to |D| ≤ 12 · |DOPT|. 

Next we determine the locality of Algorithm 1. In the algorithm, a vertex v in a hexagon h only needs to explore all 

vertices which are at most one hop away from v in order to determine whether v is the vertex closest to the center of h. 

So whether or not v ∈ D depends only on the vertices which are at most one hop away from v. 

Now we prove the processing time of Algorithm 1. Let v be a vertex and define n1(v) := |N1(v)|. In the algorithm v needs 

to determine for each vertex v′ ∈ N1(v) whether v′ ∈ h and whether v′ is closer to the center of h than v. This can be done 

in O (n1(v)) time. ☐ 

2.3. Tightness of Approximation Factor 

We give an example which shows that our analysis of Algorithm 1 is tight. denote it by G (we omitted the edges which 

are not adjacent to v in order to make the figure clearer). Note that the vertex v is on the crossing of three hexagons but 

is assigned to the hexagon h. The vertex w is on a crossing of three hexagons as well but by our resolving method it is 

assigned to the hexagon h′. Also note that the vertex u is directly in the center of its hexagon. We observe that the 

vertex v alone is sufficient to dominate all other vertices in G. Since each hexagon contains only one vertex, Algorithm 

1 assigns every vertices in the graph to D. So Algorithm 1 achieves a competitive ratio of 12 in G. 

 

 

 
Figure 4. Tight example for Algorithm 1. To make the figure clearer the edges which are not adjacent to v are omitted. 

We can enlarge this construction to an arbitrary size by putting several copies of G together. The copies of G are indeed 

connected since the length of an edge of a hexagon is 1/2 and the diameter of a hexagon is 1. 
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Figure 5. The enlargement of our construction of the tight example. It is possible to extend this to an arbitrarily large 

graph. 

3. Connected Dominating Set 

In this section we present a local approximation algorithm that computes a factor 216 approximation for connected 

dominating set. We prove its correctness, its approximation ratio and its locality distance of two hops. We prove that in 

contrast to the other problems discussed in this paper there is no constant ratio approximation algorithm with locality 

distance one. We give lower bounds for the approximation ratio of local algorithms with arbitrary locality distance k. 

Finally we give an approximation algorithm for connected dominating set for unit line graphs which achieves an 

approximation factor of 6. 

3.1. Algorithm for Unit Disk Graphs 

We present our approximation algorithm for connected dominating set in unit disk graphs with locality two. Let G = 

(V, E) be a connected unit disk graph. We use the same tiling of the plane as introduced . The algorithm works as follows: 

Consider one hexagon h. We consider each hexagon h′ such that there are pairs of adjacent 

vertices v and v′ with v ∈ h, v′ ∈ h′. We compute the two adjacent vertices v ∈ h, v′ ∈ h′ which are closest to each other 

(ties are resolved by some resolving method, e.g., by choosing the pair where the vertex in h has the smallest x-coordinate 

etc.). We assign v and v′ to the connected dominating set CD. Do this for all hexagons h′ with the above property. 

If there are no such hexagons h′ we assign the vertex v ∈ h to CD which is closest to the center of h (ties are broken like 

in Algorithm 1). The above description is presented in Algorithm 3. 

We prove the correctness and the other properties of Algorithm 3 in Theorem 4. 

Theorem 4.   

Let G be a unit disk graph. Algorithm 3 has the following properties: 

The computed set CD is a connected dominating set for G. 

Let CDOPT be an optimal connected dominating set. It holds that |CD| ≤ 216 · |CDOPT|. 

Whether or not a vertex v is in CD depends only on the vertices, i.e. Algorithm 3 is local. 

The processing time for a vertex v is quadratic in the number of vertices adjacent to v. 

Proof.   

First we prove that the set CD is indeed a connected dominating set for G. From the construction it follows that in each 

hexagon which contains vertices of G at least one vertex is assigned to CD. So CD is a dominating set for G. If in G a 

vertex 𝑣̲v¯ in a hexagon h is adjacent to a vertex 𝑣̲′v¯′ in a hexagon h′, then the algorithm ensures that for two adjacent 

vertices v and v′ with v ∈ h and v′ ∈ h′ it holds that v ∈ CD and v′ ∈ CD. So in G there is an edge between two vertices in 

two different hexagons if and only if in G restricted to CD there is an edge between these hexagons. It follows that CD is 

connected since G is connected. 

6. Conclusion 

In this work, we analyzed the role of locality in algorithms designed for dominating set, connected dominating set, 

independent set, and vertex cover in the framework of location-aware unit disk graphs. We achieved several significant 

milestones: 

http://www.ijaea.com/


                                                                                 International Journal of Advanced Engineering Application           
                                                                                                                                                 Volume No.2 Issue No 1 Jan 2025 
                                                                                                                                                                         ISSN NO:3048-6807 

www.ijaea.com                                                                                                                                          Page | 7 

1. Lower Bounds for Local Approximation Algorithms We established the first-ever lower bounds for local 

approximation algorithms tackling these problems. These bounds are directly tied to the locality distance of the 

algorithms, providing foundational insights into the trade-offs between locality and approximation quality. 

2. Computational Power of Low-Locality Algorithms For problems such as dominating set, independent set, 

and vertex cover, we demonstrated that a locality distance of just one hop suffices to guarantee a constant 

approximation ratio. However, for the connected dominating set problem, we proved that no constant ratio 

approximation algorithm exists with locality one. To address this, we designed an algorithm that achieves a 

constant approximation ratio with a locality distance of two. 

3. Open Gaps and Challenges Despite these advancements, significant gaps remain between the lower bounds 

we derived and the approximation factors of our algorithms (for locality distances one and two). Closing these 

gaps remains an open challenge. A promising direction is to establish tight bounds for the special case of unit 

line graphs, which were extensively utilized in our lower-bound proofs. Extending these constructions to unit 

disk graphs in two dimensions may yield better lower bounds, providing a more comprehensive understanding 

of the problems on general unit disk graphs. 

4. Future Directions for Locality and Approximation Another open problem is to explore the performance of 

local algorithms with small locality distances k>1k > 1k>1. It is plausible that even a slight increase in locality 

distance could significantly enhance approximation ratios. A related avenue is to investigate these problems on 

a grid with integer coordinates and nodes with arbitrary transmission radii rrr. This setup closely approximates 

unit disk graphs while ensuring that all derived lower bounds remain applicable to general unit disk graphs. 

5. Beyond Small LocalityFor larger locality distances, the vast open challenge is to determine tight bounds for 

the approximation ratios of local algorithms with arbitrary locality distances kkk. These investigations could 

uncover new insights into the computational power and limitations of local algorithms, providing a deeper 

understanding of the fundamental constraints of locality in approximation. 

By addressing these open challenges, we can bridge the gap between theory and practical implementations of algorithms 

in wireless networks, advancing our understanding of locality's impact on performance in distributed systems. 
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