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Abstract— Fused deposition modeling (FDM) is a type of additive manufacturing (AM) that creates components by layering material
in a sequential manner. Compared to traditional manufacturing techniques, FDM can produce complex geometries and intricate
details more quickly, without the need for a fixed process plan or specialized tooling, and requires minimal human intervention.
FDM parts exhibit excellent heat and chemical resistance, along with impressive strength-to-weight ratios. However, challenges
remain with the consistency, reliability, and accuracy of FDM-produced parts. To ensure consistent quality and process reliability,
real-time monitoring of the FDM process is essential. Recent research indicates that machine learning (ML) models offer a powerful
computational approach to help AM processes achieve high-quality standards, maintain product consistency, and optimize process
outcomes. Despite its potential, the integration of ML with FDM remains relatively unexplored. While existing research is limited,
there is a lack of review-based studies on the application of ML in the FDM process, which could guide future research. This paper
aims to fill that gap by providing a comprehensive overview of the use of ML in FDM. Keywords: Fused Deposition Modeling,
Machine Learning
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I. INTRODUCTION

In today's customer-focused product development environment, the demand for lightweight structures that exhibit high
strength, stiffness, and energy absorption is paramount. Due to their ability to precisely control mechanical properties, a variety
of structures have recently garnered significant attention across multiple fields (Joshi et al., 2010; Ingrole et al., 2017; Yu et
al., 2018). Metamaterials, which are among the most popular lightweight structures, are artificially engineered with complex
geometries that impart unique, counterintuitive properties. These properties are defined by three elastic constants: Young’s
modulus, shear modulus, bulk modulus, and a dimensionless parameter, Poisson’s ratio (Yu et al., 2018). Metamaterials possess
distinctive mechanical characteristics such as negative Poisson’s ratio (NPR), high shear modulus, negative compressibility,
and negative stiffness, which set them apart from conventional structures. Specifically, auxetic or NPR structures are notable
for their exceptional mechanical properties, including high indentation resistance, impact resistance, bending stiffness, fracture
toughness, vibration damping, hardness, and superior shock absorption, outperforming conventional structures with a positive
Poisson’s ratio (Elipe and Lantada, 2012; Zhang and Yang, 2016). Auxetic structures find extensive use in industries such as
automotive (e.g., car bumpers and instrument panels), aerospace (e.g., fuselage and seat structures), protective equipment (e.g.,
helmets and pads), and biomedical devices (e.g., implants and stents) due to their high strength, stiffness, and specific energy
absorption (SEA).

Fused deposition modeling (FDM), also known as fused filament fabrication (FFF), is a well-established additive
manufacturing (AM) technique renowned for its ability to produce complex products with reduced cycle times. FDM does not
require specialized tooling or a fixed process plan and involves minimal human intervention, making it widely applicable in
various engineering and medical fields. However, despite the broad application of FDM products, the process faces challenges
related to consistency in part properties, process reliability, and part accuracy. Recent advancements in computing technology
have enabled the use of machine learning (ML) techniques to enhance FDM reliability and part accuracy. Nonetheless, the
significance of ML in the FDM process has yet to be fully recognized. Therefore, this proposed work will conduct an
experimental investigation on complex parts manufactured by FDM. Regression and ML models will be developed to predict
key responses, including surface roughness, dimensional accuracy, and fabrication time (Joshi et al., 2010; Ingrole et al., 2017,
Yu et al., 2018; Elipe and Lantada, 2012; Zhang and Yang, 2016).
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Il. LITERATURE

The methodology for the proposed literature review on FDM is depicted in Figure 1. Due to the heat produced by the ME
extruder, each hot layer bonds by fusion to the previously deposited layer. Bellehumeur et al. (1996) examined how various
factors affect the porosity and compressive strength of porous structures. They developed a model to predict the impact of the
air gap on the structure's porosity. Too et al. (2002) investigated the influence of process parameters on the compressive strength
and stiffness of tissue engineering scaffolds fabricated by ME, finding that air gap and raster width were the most significant
factors. Ang et al. (2006) explored gradient auxetic structures as cores in aero-engine fan blades, analyzing their natural
frequencies and mode shapes for the first three fundamental modes. The optimized configuration led to a reduction in the mass
of the fan blade, a decrease in dynamic modal displacement, and a lowering of the first three natural frequencies.

Lira et al. (2011) studied the in-plane mechanical behavior of graded honeycomb structures, observing greater deformation at
the loading end as impact velocity increased. Shen et al. (2013) found that specimens with a sandwich deposition configuration
(raster angle £ 45°) exhibited higher stiffness than those with the default configuration (zero raster angle). Magalhaes et al.
(2014) conducted a parametric analysis on how Poisson’s ratio (cell angle) and relative density (wall thickness) influence the
mechanical properties of auxetic structures, concluding that ultimate strength is scale-dependent when Poisson’s ratio and
relative density remain constant. Zhang et al. (2016) carried out an experimental study to assess the effect of geometric
parameters on mechanical properties, developing models using genetic programming (GP), automated neural networks (ANN),
fuzzy logic, and response surface methodology (RSM). They found that ANN models performed best, followed by GP and
RSM. Panda et al. (2018) proposed a novel design for energy-dissipating structures using a gradient auxetic configuration and
performed optimization to minimize the mass of a crash box while meeting constraints on crash resistance and energy
absorption. Hou et al. (2018) studied cylindrical structures with triangular and hexagonal configurations under impact loading,
discovering that normalized plastic energy absorption is influenced by relative density, and that the ratio of cell wall to skin
thickness is a key factor in determining specific energy absorption (SEA) and deformation mode. They also found that
maintaining a positive density gradient along the crushing direction improves energy absorption at an early stage. Chen et al.
(2018a) proposed a workflow for the simultaneous integration of material design, structural design, and product fabrication of
functionally graded materials (FGMSs), which they validated on FGM tensile structures with varying material gradients.

Ituarte et al. (2019) identified infill density as the most significant process parameter for the compressive strength of tissue
engineering scaffolds. Dave et al. (2019) compared the compressive performance of regular, auxetic, and hybrid honeycomb
structures, concluding that the hybrid structure, which combines regular and auxetic designs, offered the best performance.
Raeisi et al. (2019) derived relationships for the mechanical properties of Aux-Hex structures under different loading directions,
finding that energy absorption capacity increased by 38% in the X-direction with uniform and stable deformation of unit cells.
Xu et al. (2019) concluded that extruder temperature has a greater effect on the cooling rate of material than other process
parameters, such as support temperature, speed, and layer height. Vanaei et al. (2020) conducted a comparative study on re-
entrant chiral (RCA) and regular re-entrant structures under compression loading, using the Multi-jet Fusion (MJF) technique
with polyamide 12 (PA12) to fabricate specimens. They found that RCA structures outperformed regular auxetic structures in
terms of strength and specific energy absorption (SEA). Alomarah et al. (2020) validated a mathematical approach to
parameterize lattices into Bezier surfaces and fabricated non-planar lattices via curved-layer fused deposition. They observed
that lattices with higher auxeticity resulted in less energy dissipation under cyclic loading.

McCaw and Cuan-Urquizo (2020) investigated star-chiral auxetic structures both numerically and experimentally, discovering
that the Poisson’s ratio depended on the ratio of thickness to ligaments. Attard et al. (2020) developed theoretical nonlinear
models of 2D and 3D Double-V microstructures to predict normalized Young’s modulus and Poisson’s ratio as functions of
strain, finding that geometrical parameters significantly affected mechanical properties. Gao et al. (2020) studied the crushing
performance of a novel auxetic hierarchical crash box, finding it superior in energy absorption compared to traditional crash
boxes. They also employed multi-objective optimization techniques, including the archive-based micro genetic algorithm
(AMGA), which outperformed other methods.
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I1l. FINDINGS
After thoroughly reviewing the existing literature, several key insights have emerged:

1. The reviewed literature highlights the interdisciplinary nature of the research, encompassing both additive
manufacturing (AM) and machine learning (ML) techniques.

2. Additive manufacturing proves to be an efficient and cost-effective method for fabricating complex parts.
Furthermore, the integration of ML techniques can enhance the characteristics of the parts produced.

IV. RESEARCH GAP

Researchers worldwide have made significant strides in improving the surface characteristics and mechanical properties of
parts and structures produced using the material extrusion (ME) technique. The literature review has led to the following
conclusions:

Many studies have focused on optimizing the ME process to improve surface finish, dimensional accuracy, and minimize
fabrication time for simple geometrical parts. However, there is a need for further research into the ME process for parts with
more complex geometries, such as pyramidal and conical features. While some efforts have been made to study the mechanical
properties of standard ASTM components, there is limited literature on the impact of geometric and gradient parameters of
auxetic structures on mechanical properties such as strength, stiffness, and specific energy absorption (SEA) under
compressive, shear, and flexural loading. Additionally, although some research has investigated the influence of ME process
parameters on the mechanical properties of standard ASTM components, more research is needed to explore how these
parameters affect ME-fabricated auxetic structures under various loading conditions.

Therefore, there is significant potential for experimental studies focused on improving the surface characteristics and
mechanical properties of ME-fabricated auxetic structures

V. MACHINE LEARNING AND THEIR MODELS

Machine learning (ML) is a branch of artificial intelligence (Al) where machines are initially trained by humans and
subsequently learn from their experiences. After initial training, human involvement is minimal. The ability of machines to
learn from past data allows for quick, accurate, and effective analysis. While ML models typically require large datasets for
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training, they can start with moderate datasets and do not need to wait for extensive data collection. This section will provide
a brief overview of ML fundamentals and associated models. As illustrated in Figure 3, ML can be divided into three main
categories: (1) Supervised learning, (2) Unsupervised learning, and (3) Reinforcement learning. Additionally, there is a semi-
supervised algorithm, which combines supervised and unsupervised methods, though it is less commonly used. The
categorization of supervised and unsupervised learning is detailed in Figure 2. A brief discussion of the different learning
algorithms is provided below.

Machine kearming
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Fig 2 Machine Learning and Their Models

VI. DISCUSSIONS AND FUTURE SCOPE

Fused deposition modeling (FDM), also known as fused filament fabrication (FFF), is a well-established AM technique capable
of producing complex products with reduced cycle times. This method does not require specialized tooling or a fixed process
plan and allows for minimal human intervention. As a result, FDM is widely applied across various engineering and medical
fields. However, despite its widespread use, the FDM process struggles with consistency in part properties, process reliability,
and accuracy. Advances in computing technology have facilitated the integration of ML techniques to enhance FDM reliability
and part accuracy. However, a comprehensive review highlighting the significance of ML in the FDM process has yet to be
established.
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